Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T09:16:54.391Z Has data issue: false hasContentIssue false

Preparation and Characterization of Monodispersed Colloidal Particles

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recently the science and technology of fine particles have been greatly advanced to meet the urgent demands of modern industries for specific and sophisticated functions for various materials, including catalysts, sensors, electromagnetic devices, and photosensitive materials. Monodispersed colloidal Systems are invaluable for this purpose because the entire system's uniform physicochemical properties directly reflect the properties of each constituent particle. Procedures for modifying monodispersed particles have progressed remarkably in recent years so that specific characteristics can be achieved. This article focuses on the backgrounds of science and technology for controlling the properties of inorganic monodispersed particles and on new developments in this field.

Colloidal particles are normally formed through a sequential process of nucleation and growth of the nuclei. To obtain a monodisperse System, the two stages must be strictly separated and nucleation avoided during the growth period. Since the steady concentration of monomers in the growth stage is determined by the balance between the rates of generation of monomers and their consumption by particle growth, the generation or introduction rate of monomers must be controlled so that it is low enough to keep the balanced monomer concentration below the critical supersaturation after the nucleation period. Typically, the initial concentrations of metal sait, pH, and temperature are adjusted to meet this requirement for the formation of monodispersed metal hydrous oxide particles by forced hydrolysis of metal ions.

An artificial separation between nucleation and growth processes may be achieved by “seeding,” in which foreign particles are introduced into the solution of monomers below the critical supersaturation. One may also lower the pH in hydrolysis of metal ions, dilute with solvent, add chelating agents, or suddenly change the temperature just after limited nucleation. All these procedures could cause the monomer concentration above the critical supersaturation to plunge to a level below it.

Type
Fine Particles Part I
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sugimoto, T., Adv. Colloid Interface Sci. 28 (1987) p. 65.CrossRefGoogle Scholar
2.Sugimoto, T., Hyomen (Surface) 22 (1984) p. 177.Google Scholar
3.Boutonnet, M., Kizling, J., Stenius, P., and Maire, G., Colloid Surf. 5 (1982) p. 209.CrossRefGoogle Scholar
4.Hsu, W.P., Rönnquist, L., and Matijević, E., Langmuir 4 (1988) p. 31.CrossRefGoogle Scholar
5.Williams, R., Yocom, P.N., and Stofko, F.S., J. Colloid Interface Sci. 106 (1985) p. 388.CrossRefGoogle Scholar
6.Towe, K.M. and Bradley, W.F., J. Colloid Interface Sci. 24 (1967) p. 384.CrossRefGoogle Scholar
7.Sugimoto, T. and Matijevic, E., J. Colloid Interface Sci. 74 (1980) p. 227.CrossRefGoogle Scholar
8.Wilhelmy, D.M. and Matijevicaccu, E., Colloid Surf. 16 (1985) p. 1.CrossRefGoogle Scholar
9.Matijević, E. and Scheiner, P., J. Colloid Interface Sci. 63 (1978) p. 509.CrossRefGoogle Scholar
10.Hamada, S. and Matijević, E., J. Chem. Soc. Faraday Trans. I 78 (1982) p. 2147.CrossRefGoogle Scholar
11.Ozaki, M., Kratohvil, S., and Matijević, E., J. Colloid Interface Sci. 102 (1984) p. 146.CrossRefGoogle Scholar
12.Hamada, S., Niizeki, S., and Kudo, Y., Bull. Chem. Soc. Jpn. 59 (1986) p. 3443.CrossRefGoogle Scholar
13.Sapieszko, R.S. and Matijević, E., J. Colloid Interface Sci. 74 (1980) p. 405.CrossRefGoogle Scholar
14.Nishiyama, S., German patent (OLS) 3 515 280A (1985); J.E. Maskasky, J. Imag. Sci. 30 (1986) p. 247; S. Matsuzaka, Y. Suda, and S. Nishiwaki, International Congress of Photographie Science, Cologne, (1986) p. 62.Google Scholar
15.Claes, F.H., Libeer, M.J.M., and Vanassche, W.J., J. Phot. Sci. 21 (1973) p. 39.Google Scholar
16.Wyrsch, D., International Congress of Photographie Science, Rochester, NY (1978) p. 122.Google Scholar
17.Claes, F. and Berendsen, R., Phot. Korr. 101 (1965) p. 37.Google Scholar
18.Moisar, E. and Klein, E., Ber. Bunsenges. Phys. Chem. 67 (1963) p. 949.CrossRefGoogle Scholar
19.Knack, O. and JStranski, .N., Z. Elektrochem. 60 (1956) p. 816.Google Scholar
20.Tamura, H. and Matijević, E., J. Colloid Interface Sci. 90 (1982) p. 100.Google Scholar
21.Regazzoni, A.E. and Matijević, E., Colloids Surf. 6 (1983) p. 189.CrossRefGoogle Scholar
22.Matijević, E., Simpson, C.M., Amin, N., and Arajs, S., Colloids Surf. 21 (1986) p. 101.CrossRefGoogle Scholar
23.Matijević, E., J. Colloid Interface Sci. 117 (1987) p. 593.CrossRefGoogle Scholar
24.Fan, Xi-Jing and Matijević, E., J. Am. Ceram. Soc. 71 (1988) p. C60.CrossRefGoogle Scholar
25.Gherardi, P. and Matijević, E. in High Tech. Ceramics (Elsevier, Amsterdam, 1987) p. 14771485; Colloids Surf. 32 (1988) p. 257.Google Scholar
26.Matijević, E., La Chimica l'Industria 70 (1988) p. 1.Google Scholar
27.Wilhelmy, D.M. and Matijević, E., Colloids Surf. 16 (1985) p. 1.CrossRefGoogle Scholar
28.Ingebrethsen, B.J., Matijević, E., and Partch, R.E., J. Colloid Interface Sci. 95 (1983) p. 228.CrossRefGoogle Scholar
29.Balboa, A., Partch, R.E., and Matijević, E., Colloids Surf. 27 (1987) p. 123.Google Scholar
30.Partch, R.E., Nakamura, K., Wolfe, K.J., and Matijević, E., J. Colloid Interface Sci. 105 (1985) p. 560.CrossRefGoogle Scholar
31.Stoeber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26 (1968) p. 62.CrossRefGoogle Scholar
32.Barringer, E.A. and Bowen, H.K., J. Am. Ceram. Soc. 65 (1982) p. C 199.CrossRefGoogle Scholar
33.Tentorio, A., Matijević, E., and Kratohvil, J.P., J. Colloid Interface Sci. 77 (1980) p. 418.CrossRefGoogle Scholar
34.Maskasky, J.E., Phot. Sci. Eng. 28 (1984) p. 202.Google Scholar
35.Ozaki, M. and Matijević, E., J. Colloid Interface Sci. 107 (1985) p. 199.CrossRefGoogle Scholar
36.Ishikawa, T. and Matijević, E., Langmuir 4 (1988) p. 26.CrossRefGoogle Scholar
37.Janeković, A. and Matijević, E., J. Colloid Interface Sci. 103 (1985) p. 436.CrossRefGoogle Scholar
38.Sordelet, D. and Akinc, M., J. Colloid Interface Sci. 122 (1988) p. 47.CrossRefGoogle Scholar
39.Matijević, E. and Hsu, W.P., J. Colloid Interface Sci. 118 (1987) p. 506.CrossRefGoogle Scholar
40.Kratohvil, S. and Matijević, E., Adv. Ceram. Mater. 2 (1987) p. 798.CrossRefGoogle Scholar
41.Garg, A. and Matijević, E., Langmuir 4 (1988) p. 38.CrossRefGoogle Scholar
42.Garg, A. and Matijević, E., J. Colloid Interface Sci. 126 (1988) p. 243.CrossRefGoogle Scholar
43.Aiken, B. and Matijević, E., J. Colloid Interface Sci. 126 (1988) p. 645.CrossRefGoogle Scholar
44.Pathmamanoharan, C., Colloids Surf. 34 (1988/1989) p. 81.CrossRefGoogle Scholar
45.Bando, S., Shibahara, Y., and Ishimaru, S., J. Imag. Sci. 29 (1985) p. 193.Google Scholar
46.Sugimoto, T. and Hayakawa, T., U.S. Patent 4 614 711 (1986); 4 713 318 (1987).Google Scholar
47.Haruta, M. and Delmon, B., J. Chim. Phys. 83 (1986) p. 859; M. Haruta and H. Sano, Shokubai (Catalysts) 26 (1984) p. 140.Google Scholar
48.Maskasky, J.E., Phot. Sci. Eng. 25 (1981) p. 96.Google Scholar
49.Maskasky, J.E., U.S. Patent 4 463 087 (1984).Google Scholar
50.Sugimoto, T. and Miyake, K., Jpn. Pat. Appl. (OPI) 62-7040 (1987).Google Scholar
51.Kim, M.J. and Matijević, E., Chem. Mater. 1 (1989) p. 363.CrossRefGoogle Scholar