Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T17:45:51.207Z Has data issue: false hasContentIssue false

Prediction of Inorganic Compounds: Experiences and Perspectives

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

There have been many achievements in the last decade in the development of materials science, chemistry, and physics (experimental and theoretical). However, the most difficult problem—calculating the intrinsic properties of multicomponent compounds starting from the knowledge of their constituent components' properties—still remains unsolved. Calculations or predictions based on only the properties of constituent components (or simply, properties) are called a priori calculations or predictions. These difficulties are due to the solution of mathematical problems arising in the quantum mechanical calculations of multi-electronic systems. As a result, scientists make use of many empirical prediction methods that use existing regularities from a variety of property data. Some of the empirical criteria for the formation of compounds with predefined properties use the rules of Hume-Rothery, Laves, Mathias, Goldschmidt, Villars, and Darken-Gurry.

Type
Trends in Materials Data: Regularities and Predictions
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hume-Rothery, W. in Phase Stability in Metals and Alloys, edited by Rudman, P.S., Stringer, J., and Jaffe, R.I. (McGraw-Hill, New York, 1967).Google Scholar
2.Laves, F. in Phase Stability in Metals and Alloys, edited by Rudman, P.S., Stringer, J., and Jaffe, R.I. (McGraw-Hill, New York, 1967).Google Scholar
3.Mathias, B.T., Phys. Rev. 97 (1955) p. 74.CrossRefGoogle Scholar
4.Fesenko, E.G., Filip'ev, V.S., and Kupriyanov, M.F., Segnetoelektriki (Rostov University, Rostov/Don, 1968) p. 63.Google Scholar
5.Villars, P., J. Less-Common Met. 119 (1986) p. 175.CrossRefGoogle Scholar
6.Darken, L.S. and Gurry, R.W., Physical Chemistry of Metals (McGraw-Hill, New York, 1953).Google Scholar
7.Savitskii, E.M., Devingtal, Y.V., and Gribulya, V.B., Dok. Akad. Nauk SSSR [Sou Phys. Dokl.] 178 (1968) p. 79.Google Scholar
8.Devingtal, Y.V., Izv. Akad. Nauk SSSR, Tech. Kibernetika 1 (1968) p. 162.Google Scholar
9.Devingtal, Y.V., Izv. Akad. Nauk SSSR, Tech. Kibernetika 3 (1968) p. 139.Google Scholar
10.Gladun, V.P., Heuristic Search in Complex Media (Russian), (Naukova Dumka, Kiev, 1977).Google Scholar
11.Savitskii, E.M., Gribulya, V.B., Kiselyova, N.N., et al., Prognozirovanie v Materialovedenii s Primeneniem EVM (Nauka, Moscow, 1990).Google Scholar
12.Kiselyova, N.N. and Savitskii, E.M., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 235 (1977) p. 1367.Google Scholar
13.Kiselyova, N.N., Pokrovskii, B.I., Komissarova, L.N., and Vashchenko, N.D., Zh. Neorg. Khimii 22 (1977) p. 883.Google Scholar
14.Kiselyova, N.N., Lutsyk, V.I., Vorob'eva, V.P., et al., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 304 (1989) p. 657.Google Scholar
15.Savitskii, E.M., Gribulya, V.B., and Kiselyova, N.N., J. Less-Common Met. 72 (1980) p. 307.CrossRefGoogle Scholar
16.Savitskii, E.M., Gladun, V.P., and Kiselyova, N.N., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 233 (1977) p. 657.Google Scholar
17.Kiselyova, N.N., Izv. Akad. Nauk SSSR, Metals 2 (1987) p. 213.Google Scholar
18.Kiselyova, N.N. and Burhanov, G.S., Izv. Akad. Nauk SSSR, Metals 1 (1989) p. 218.Google Scholar
19.Kiselyova, N.N. and Savitskii, E.M., Izv. Akad. Nauk SSSR Neorg. Mater., [Inorg. Mater. (USSR)] 19 (1983) p. 489.Google Scholar
20.Savitskii, E.M. and Kiselyova, N.N., Izv. Akad. Nauk SSSR, Metals 1 (1984) p. 191.Google Scholar
21.Kiselyova, N.N. and Burhanov, G.S., Izv. Akad. Nauk SSSR Neorg. Mater. [Inorg. Mater. (USSR)] 23 (1987) p. 2006.Google Scholar
22.Kiselyova, N.N. and Savitskii, E.M., Zh. Neorg. Khimii 29 (1984) p. 3104.Google Scholar
23.Kiselyova, N.N. and Savitskii, E.M., Zh. Neorg. Khimii 27 (1982) p. 2880.Google Scholar
24.Savitskii, E.M. and Kiselyova, N.N., Izv. Akad. Nauk SSSR Neorg. Mater. [Inorg. Mater. (USSR)] 15 (1979) p. 1101.Google Scholar
25.Savitskii, E.M., Kiselyova, N.N., and Vaschenko, N.D., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 239 (1978) p. 1154.Google Scholar
26.Kiselyova, N.N. and Savitskii, E.M., Zh. Neorg. Khimii 24 (1979) p. 1427.Google Scholar
27.Savitskii, E.M. and Kiselyova, N.N., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 272 (1983) p. 652.Google Scholar
28.Savitskii, E.M., Kiselyova, N.N., Pishchik, B.N., Kravchenko, N.V., and Golikova, M.S., Dok. Akad. Nauk SSSR [Sov. Phys. Dokl.] 279 (1984) p. 627.Google Scholar
29.Golikova, M.S., Burhanov, G.S., Kiselyova, N.N., et al., Izv. Akad. Nauk SSSR Neorg. Mater. [Inorg. Mater. (USSR)] 25 (1989) p. 700.Google Scholar
30.Kravchenko, N.V., Burhanov, G.S., Kiselyova, N.N., et al., Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR) 27 (1991) p. 164.Google Scholar
31.Kiselyova, N.N. and Kravchenko, N.V., Zh. Neorg. Khimii 37 (1992) p. 698.Google Scholar
32.Markin, O.Y., Upravlyauyschie Systemi i Mashini 2 (1988) p. 88.Google Scholar
33.Kiselyova, N.N., Upravlyauyschie Systemi i Mashini 5/6 (1992) p. 125.Google Scholar