Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T10:05:10.823Z Has data issue: false hasContentIssue false

Porphyrin-based photocatalysts for hydrogen production

Published online by Cambridge University Press:  10 January 2020

Liang Wang
Affiliation:
Henan University, China; [email protected]
Hongyou Fan
Affiliation:
Sandia National Laboratories and Department of Chemical and Biological Engineering, The University of New Mexico, USA; [email protected]
Feng Bai
Affiliation:
Henan University, China; [email protected]
Get access

Abstract

Photocatalytic hydrogen production from water is a facile and clean approach to convert rich solar energy into chemical fuel. Developing efficient and robust catalysts to accelerate water-splitting speed is key. Porphyrins exist widely in green plants and are a key photosensitizer to absorb and transfer light energy to other parts of the photosynthesis system of plants. They are considered an ideal model to construct artificial photocatalysts for hot-carrier-mediated hydrogen production. This article discusses recent achievements in constructing porphyrin-based photocatalysts for hydrogen production, including porphyrin molecules, self-assembled porphyrins, metal–organic frameworks, conjugated porphyrin polymers, and hybrid nanomaterial-based photocatalysts. The design and synthesis principles, structure–property relationships, as well as urgent issues to be solved in the future for every type of photocatalyst are also discussed.

Type
Materials for Hot-Carrier Chemistry
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Y., Suzuki, H., Xie, J., Tomita, O., Martin, D.J., Higashi, M., Kong, D., Abe, R., Tang, J., Chem. Rev. 118, 5201 (2018).CrossRefGoogle Scholar
Wang, Q., Domen, K., Chem. Rev. (forthcoming), doi:10.1021/acs.chemrev.9b00201.Google Scholar
Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., Thomas, A., Schmidt, J., J. Am. Chem. Soc. 140, 1423 (2018).CrossRefGoogle Scholar
Wang, X., Chen, L., Chong, S.Y., Little, M.A., Wu, Y., Zhu, W.H., Clowes, R., Yan, Y., Zwijnenburg, M.A., Sprick, R.S., Cooper, A.I., Nat. Chem. 10, 1180 (2018).CrossRefGoogle Scholar
Rahman, M.Z., Mullins, C.B., Acc. Chem. Res. 52, 248 (2019).CrossRefGoogle Scholar
Zhang, C., Chen, P., Dong, H., Zhen, Y., Liu, M., Hu, W., Adv. Mater. 27, 5379 (2015).CrossRefGoogle Scholar
Li, Q., Zhao, N., Bai, F., MRS Bull . 44 (3), 172 (2019).CrossRefGoogle Scholar
Jiang, Y.B., Sun, Z., MRS Bull . 44 (3), 167 (2019).CrossRefGoogle Scholar
Wei, W., Bai, F., Fan, H., iScience 11, 272 (2019).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Tian, Y., MRS Bull . 44 (3), 183 (2019).CrossRefGoogle Scholar
Wei, W., Sun, J., Fan, H., MRS Bull . 44 (3), 178 (2019).CrossRefGoogle Scholar
Queyriaux, N., Giannoudis, E., Windle, C.D., Roy, S., Pécaut, J., Coutsolelos, A.G., Artero, V., Chavarot-Kerlidou, M., Sustain. Energy Fuels 2, 553 (2018).CrossRefGoogle Scholar
Zhu, M., Dong, Y., Du, Y., Mou, Z., Liu, J., Yang, P., Wang, X., Chem. Eur. J. 18, 4367 (2012).CrossRefGoogle Scholar
Bodedla, G.B., Li, L., Che, Y., Jiang, Y., Huang, J., Zhao, J., Zhu, X., Chem. Commun. 54, 11614 (2018).CrossRefGoogle Scholar
Lang, P., Habermehl, J., Troyanov, S.I., Rau, S., Schwalbe, M., Chem. Eur. J. 24, 3225 (2018).CrossRefGoogle Scholar
Natali, M., Argazzi, R., Chiorboli, C., Iengo, E., Scandola, F., Chem. Eur. J. 19, 9261 (2013).CrossRefGoogle Scholar
Nikoloudakis, E., Karikis, K., Han, J., Kokotidou, C., Charisiadis, A., Folias, F., Douvas, A.M., Mitraki, A., Charalambidis, G., Yan, X., Coutsolelos, A.G., Nanoscale 11, 3557 (2019).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R.E., Bai, F., Fan, H., Nano Lett . 16, 6523 (2016).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., , X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett . 14, 7175 (2014).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett . 17, 6916 (2017).CrossRefGoogle Scholar
Wang, D., Niu, L., Qiao, Z.Y., Cheng, D.B., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano 12, 3796 (2018).CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett . 18, 560 (2018).CrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R., Fan, H., ACS Nano 8, 827 (2014).CrossRefGoogle Scholar
Liu, Y., Wang, L., Feng, H., Ren, X., Ji, J., Bai, F., Fan, H., Nano Lett . 19, 2614 (2019).CrossRefGoogle Scholar
Fateeva, A., Chater, P.A., Ireland, C.P., Tahir, A.A., Khimyak, Y.Z., Wiper, P.V., Darwent, J.R., Rosseinsky, M.J., Angew. Chem. Int. Ed. Engl. 51, 1 (2012).CrossRefGoogle Scholar
Fang, X., Shang, Q., Wang, Y., Jiao, L., Yao, T., Li, Y., Zhang, Q., Luo, Y., Jiang, H., Adv. Mater. 30, 1705112 (2018).CrossRefGoogle Scholar
He, T., Chen, S., Ni, B., Gong, Y., Wu, Z., Song, L., Gu, L., Hu, W., Wang, X., Angew. Chem. Int. Ed. Engl. 57, 3493 (2018).CrossRefGoogle Scholar
Lan, G., Zhu, Y.Y., Veroneau, S.S., Xu, Z., Micheroni, D., Lin, W., J. Am. Chem. Soc. 140, 5326 (2018).CrossRefGoogle Scholar
Ranjeesh, K.C., George, L., Wakchaure, V.C., Goudappagouda, , Devi, R.N., Babu, S.S., Chem. Commun. 55, 1627 (2019).CrossRefGoogle Scholar
Mukherjee, G., Thote, J., Aiyappa, H.B., Kandambeth, S., Banerjee, S., Vanka, K., Banerjee, R., Chem. Commun. 53, 4461 (2017).CrossRefGoogle Scholar
Liao, P., Hu, Y., Liang, Z., Zhang, J., Yang, H., He, L.Q., Tong, Y.X., Liu, J.M., Chen, L., Su, C.Y., J. Mater. Chem. A 6, 3195 (2018).CrossRefGoogle Scholar
Chen, Z., Wang, J., Zhang, S., Zhang, Y., Zhang, J., Li, R., Peng, T., ACS Appl. Energy Mater. 2, 5665 (2019).CrossRefGoogle Scholar
Yuan, Y., Chen, D., Zhong, J., Yang, L., Wang, J., Yu, Z., Zou, Z., J. Phys. Chem. C 121, 24452 (2017).CrossRefGoogle Scholar
Watanabe, M., Sun, S., Ishihara, T., Kamimura, T., Nishimura, M., Tani, F., ACS Appl. Energy Mater. 1, 6072 (2018).CrossRefGoogle Scholar
Guo, X., Li, X., Qin, L., Kang, S., Li, G., Appl. Catal. B. 243, 1 (2019).CrossRefGoogle Scholar
Liu, K., Xing, R., Li, Y., Zou, Q., Helmuth, M., Yan, X., Angew. Chem. Int. Ed. Engl. 55, 1 (2016).Google Scholar
Zhang, L., Qin, L., Kang, S., Li, G., Li, X., ACS Sustain. Chem. Eng. 7, 8358 (2019).CrossRefGoogle Scholar
Zhu, K., Luo, Q., Kang, S., Qin, L., Li, G., Li, X., Nanoscale 10, 18635 (2018).CrossRefGoogle Scholar