Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:38:58.188Z Has data issue: false hasContentIssue false

Porphyrin and macrocycle derivatives for electrochemical water splitting

Published online by Cambridge University Press:  13 July 2020

Qi Li
Affiliation:
The Key Laboratory for Special Functional Materials of MOE, School of Materials Science and Engineering, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Yue Bao
Affiliation:
The Key Laboratory for Special Functional Materials of MOE, School of Materials Science and Engineering, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Feng Bai
Affiliation:
The Key Laboratory for Special Functional Materials of MOE, School of Materials Science and Engineering, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; [email protected]
Get access

Abstract

Hydrogen is a promising alternative fuel for efficient energy production and storage, with water splitting considered one of the cleanest, environmentally friendly, and sustainable approaches to generate hydrogen. Electrochemically catalyzed water splitting plays an important role in energy conversion for the development of hydrogen-based energy sources. Porphyrin and macrocycle derivatives are versatile and can electrochemically catalyze water splitting efficiently. Because of the significance of molecule activation of electrochemical water splitting, this article covers recent progress in hydrogen evolution and oxygen evolution reactions catalyzed by porphyrin and macrocycle derivatives.

Type
Nanomaterials for Electrochemical Water Splitting
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zuo, Q., Liu, T., Chen, C., Ji, Y., Gong, X., Mai, Y., Zhou, Y., Angew. Chem. Int. Ed. Engl. 58, 10198 (2019).Google Scholar
Liu, Y., Zhou, G., Zhang, Z., Lei, H., Yao, Z., Li, J., Lin, J., Cao, R., Chem. Sci. 11, 87 (2020).CrossRefGoogle Scholar
Al Cheikh, J., Villagra, A., Ranjbari, A., Pradon, A., Antuch, M., Dragoe, D., Millet, P., Assaud, L., Appl. Catal. B 250, 292 (2019).CrossRefGoogle Scholar
Xin, Z., Wang, Y.-R., Chen, Y., Li, W.-L., Dong, L.-Z., Lan, Y.-Q., Nano Energy 67, 104233 (2020).CrossRefGoogle Scholar
Yang, H., Bright, J., Kasani, S., Zheng, P., Musho, T., Chen, B., Huang, L., Wu, N., Nano Res. 12, 643 (2019).CrossRefGoogle Scholar
Liu, Y., Wang, L., Feng, H., Ren, X., Ji, J., Bai, F., Fan, H., Nano Lett. 19, 2614 (2019).CrossRefGoogle Scholar
Wang, L., Fan, H., Bai, F., MRS Bull. 45 (1), 49 (2020).Google Scholar
Xu, G., Lei, H., Zhou, G., Zhang, C., Xie, L., Zhang, W., Cao, R., Chem. Commun. 55, 12647 (2019).CrossRefGoogle Scholar
Tian, S., Chen, S., Ren, X., Cao, R., Hu, H., Bai, F., Nano Res. 12, 3109 (2019).CrossRefGoogle Scholar
Li, X.L., Lei, H.T., Guo, X.J., Zhao, X.L., Ding, S.P., Gao, X.Q., Zhang, W., Cao, R., ChemSusChem 10, 4632 (2017).CrossRefGoogle Scholar
Krishna, J.V.S., Krishna, N.V., Singh, S.K., Shaw, P.K., Dhavale, V.M., Vardhaman, A.K., Giribabu, L., Eur. J. Inorg. Chem. 2018, 1549 (2018).Google Scholar
Li, Q., Zhao, N., Bai, F., MRS Bull. 44, 172 (2019).CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett. 18, 560 (2018).CrossRefGoogle Scholar
Wang, N., Lei, H., Zhang, Z., Li, J., Zhang, W., Cao, R., Chem. Sci. 10, 2308 (2019).CrossRefGoogle Scholar
Jiang, J., Materna, K.L., Hedström, S., Yang, K.R., Crabtree, R.H., Batista, V.S., Brudvig, G.W., Angew. Chem. Int. Ed. Engl. 56, 9111 (2017).Google Scholar
Han, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W., Cao, R., Angew. Chem. Int. Ed. Engl. 55, 5457 (2016).Google Scholar
Lei, H., Li, X., Meng, J., Zheng, H., Zhang, W., Cao, R., ACS Catal. 9, 4320 (2019).CrossRefGoogle Scholar
Lei, H., Fang, H., Han, Y., Lai, W., Fu, X., Cao, R., ACS Catal. 5, 5145 (2015).CrossRefGoogle Scholar
Denisov, I.G., Makris, T.M., Sligar, S.G., Schlichting, I., Chem. Rev. 105, 2253 (2005).CrossRefGoogle Scholar
Xu, L., Lei, H., Zhang, Z., Yao, Z., Li, J., Yu, Z., Cao, R., Phys. Chem. Chem. Phys. 19, 9755 (2017).CrossRefGoogle Scholar
Sun, H., Han, Y., Lei, H., Chen, M., Cao, R., Chem. Commun. 53, 6195 (2017).CrossRefGoogle Scholar
Marianov, A.N., Jiang, Y., ACS Sustain. Chem. Eng. 7, 3838 (2019).CrossRefGoogle Scholar
Laure, W., De Bruycker, K., Espeel, P., Fournier, D., Woisel, P., Du Prez, F.E., Lyskawa, J., Langmuir 34, 2397 (2018).CrossRefGoogle Scholar
Lyskawa, J., Bélanger, D., Chem. Mater. 18, 4755 (2006).CrossRefGoogle Scholar
Li, X.L., Lei, H.T., Liu, J.Y., Zhao, X.L., Ding, S.P., Zhang, Z.Y., Tao, X.X., Zhang, W., Wang, W.C., Zheng, X.H., Cao, R., Angew. Chem. Int. Ed. Engl. 57, 15070 (2018).Google Scholar
Li, H., X.L. Li, H.T. Lei, G.J. Zhou, W. Zhang, R. Cao, ChemSusChem 12, 801 (2019).CrossRefGoogle Scholar
Seo, S., K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale 9, 3969 (2017).Google Scholar