Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:22:32.409Z Has data issue: false hasContentIssue false

Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Zinc oxide is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multifunctionalities. By controlling the size and orientation of the polar surfaces of ZnO nanobelts, single - crystal nanocombs, nanorings, nanohelices, nanosprings, and nanobows of ZnO have been synthesized. This article centers on the fundamental growth mechanism and fabrication of electromechanical devices based on piezoelectric ZnO nanostructures, including a nanogenerator using aligned ZnO nanowires for converting nanoscale mechanical energy into electric energy. The mechanism of the electric nanogenerator relies on the unique coupling of the piezoelectric and semiconducting properties of ZnO, which is the fundamental principle of nano - piezotronics, a new field using the piezoelectric effect for fabricating electronic devices and components. The approach has the potential of converting biological mechanical energy, acoustic/ultrasonic vibration energy, and biofluid hydraulic energy into electricity, demonstrating a new pathway for self - powering of wireless nanodevices and nanosystems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291 (2001) p. 1947.Google Scholar
2.Wang, Z.L., J. Phys.: Condens. Matter 16 (2004) p. 829.Google Scholar
3.Arnold, M.S., Avouris, P., and Wang, Z.L., J. Phys. Chem. B 107 (2002) p. 659.CrossRefGoogle Scholar
4.Comini, E., Faglia, G., Sberveglieri, G., Pan, Z.W., and Wang, Z.L., Appl. Phys. Lett. 81 (2002) p. 1869.Google Scholar
5.Bai, X.D., Gao, P.X., Wang, Z.L., and Wang, E.G., Appl. Phys. Lett. 82 (2003) p. 4806.CrossRefGoogle Scholar
6.Hughes, W. and Wang, Z.L., Appl. Phys. Lett. 82 (2003) p. 2886.Google Scholar
7.Shi, L., Hao, Q., Yu, C., Kim, D., Mingo, N., Kong, X.Y., and Wang, Z.L., Appl. Phys. Lett. 84 (2004) p. 2638.CrossRefGoogle Scholar
8.Minne, S.C., Manalis, S.R., and Quate, C.F., Appl. Phys. Lett. 67 (1995) p. 3918.CrossRefGoogle Scholar
9. See the special issue on transparent conducting oxides, MRS Bull. 25 (August 2000).CrossRefGoogle Scholar
10.Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M., and Shen, H., J. Appl. Phys. 85 (1999) p. 2595.CrossRefGoogle Scholar
11.Kong, X.Y. and Wang, Z.L., Nano Lett. 3 (2003) p. 1625.CrossRefGoogle Scholar
12.Kong, X.Y., Ding, Y., Yang, R., and Wang, Z.L., Science 303 (2004) p. 1348.CrossRefGoogle Scholar
13.Wang, Z.L., Kong, X.Y., Ding, Y., Gao, P. X., Hughes, W., Yang, R.S., and Zhang, Y., Adv. Funct. Mater. 14 (2004) p. 944.Google Scholar
14.Wang, Z.L., Mater. Today 7 (June 2004) p. 26.CrossRefGoogle Scholar
15.Gao, P.X. and Wang, Z.L., Small 1 (2005) p. 945.CrossRefGoogle Scholar
16.Hughes, W.L. and Wang, Z.L., Appl. Phys. Lett. 86 043106 (2005).Google Scholar
17.Ding, Y., Kong, X.Y., and Wang, Z.L., Phys. Rev. B 70 235408 (2004).CrossRefGoogle Scholar
18.Gao, P.X., Ding, Y., Mai, W.J., Hughes, W.L., Lao, C.S., and Wang, Z.L., Science 309 (2005) p. 1700.CrossRefGoogle Scholar
19.Gao, P.X., Mai, W.J., and Wang, Z.L., Nano Lett. 6 (2006) p. 2536.CrossRefGoogle Scholar
20.Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R.R., and Choi, H.J., Adv. Funct. Mater. 12 (2002) p. 323.3.0.CO;2-G>CrossRefGoogle Scholar
21.Gao, P.X., Ding, Y., and Wang, Z.L., Nano Lett. 3 (2003) p. 1315.CrossRefGoogle Scholar
22.Wang, X.D., Summers, C.J., and Wang, Z.L., Nano Lett. 3 (2004) p. 423.Google Scholar
23.Wang, X.D., Song, J.H., Summers, C.J., Ryou, J.H., Li, P., Dupuis, R.D., and Wang, Z.L., J. Phys. Chem. B 110 (2006) p. 7720.CrossRefGoogle Scholar
24.Wang, X.D., Song, J.H., Li, P., Ryou, J.H., Dupuis, R.D., Summers, C.J., and Wang, Z.L., J. Am. Chem. Soc. 127 (2005) p. 7920.Google Scholar
25.Song, J.H., Wang, X.D., Riedo, E., and Wang, Z.L., J. Phys. Chem. B 109 (2005) p. 9869.Google Scholar
26.Ma, C. and Wang, Z.L., Adv. Mater. 17 (2005) p. 1.Google Scholar
27.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277 (1997) p. 1971.Google Scholar
28.Salvetat, J.P., Briggs, G.A., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Burnham, N.A. and Forro, L., Phys. Rev. Lett. 82 (1999) p. 944.Google Scholar
29.Mai, W.J., Wang, Z.L. , Appl. Phys. Lett 89 073112 (2006).CrossRefGoogle Scholar
30.Buchine, B.A., Hughes, W.L.Degertekin, F.L. and Wang, Z.L., Nano Lett 6 (2006) 1155.Google Scholar
31.Duan, X.F., Huang, Y.Agarwal, R. and Lieber, C.M., Nature 421 (2003) 241.Google Scholar
32.Zheng, G.F., Patolsky, F., Cui, Y.Wang, W.U. and Lieber, C.M., Nature Biotechnol 23 (2005) p.1294.CrossRefGoogle Scholar
33.Bai, X.D., Gao, P.X, Wang, Z.L. and Wang, E.G., Appl. Phys.Lett 82 (2003) p.4806.CrossRefGoogle Scholar
34.Wang, Z.L. andSong, J.H., Sciene 312 (2006) p.242.Google Scholar
35.Song, J.H., Zhou, J.,and Wang, Z.L., Nano Lett 6 (2006) p.1656.CrossRefGoogle Scholar
36.Zaho, M.H., Wang, Z.L.,and Mao, S.X., Nano Lett 4 (2004) p.587.CrossRefGoogle Scholar
37.Wang, Z.L., Kong, X.Y.,and Zuo, J.M., Phys. Rev. Lett. 91 185502(2003).Google Scholar
38.Gao, P.X., Song, J.H., Liu, J.Wang, Z.L, U.S. patent pending (2003).Google Scholar
39.Zhou, J., Xu, N.S., Wang, Z.L., Adv. Mater. 18 (2006)2432.Google Scholar
40.Wang, X.D, Zhou, J., Song, J.H., Liu, JXu, N.S.Wang, Z.L., Nano Lett 6 (2006)2768.CrossRefGoogle Scholar
41.Dai, Y., Zhang, Y., Wang, Z.L.,, Solid State Commun 126 (2003)629.CrossRefGoogle Scholar
42.Gao, P.X., Wang, Z.L.,, J. Appl. Phys 97 044304.(2003)CrossRefGoogle Scholar
43.Hughes, W.L., Wang, Z.L., J. Am. Chem. Soc 126 (2004)6703.Google Scholar
44.Lao, C.S., Goa, P.X.Yang, R.S., Zhang, Y., Dai, Y.Wang, Z.L., Chem. Phys. Lett. 417 (2005)p. 359.Google Scholar
45.He, J.H., Hsin, C.H.Chen, L.J., Wang, Z.L., Adv. Mater. (2006)in press.Google Scholar