Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T15:01:21.553Z Has data issue: false hasContentIssue false

Phase-engineered transition-metal dichalcogenides for energy and electronics

Published online by Cambridge University Press:  13 July 2015

Manish Chhowalla
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, USA; [email protected]
Damien Voiry
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, USA; [email protected]
Jieun Yang
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, USA; [email protected]
Hyeon Suk Shin
Affiliation:
Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology, South Korea; [email protected]
Kian Ping Loh
Affiliation:
Department of Chemistry, National University of Singapore, Singapore; [email protected]
Get access

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) consist of over 40 compounds. Complex metal TMDs assume the 1T phase where the transition-metal atom coordination is octahedral. The 2H phase is stable in semiconducting TMDs where the coordination of metal atoms is trigonal prismatic. Stability issues have hampered the study of interesting phenomena in two-dimensional 1T phase TMDs. Phase conversion in TMDs involves transformation by chemistry at room temperature and pressure. It is possible to convert 2H phase 2D TMDs to the 1T phase or locally pattern the 1T phase on the 2H phase. The chemically converted 1T phase 2D TMDs exhibit interesting properties that are being exploited for catalysis, source and drain electrodes in field-effect transistors, and energy storage. We summarize the key properties of 2D 1T phase TMDs and their applications as electrodes for energy and electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Py, M., Haering, R., Can. J. Phys. 61, 76 (1983).CrossRefGoogle Scholar
Joensen, P., Frindt, R., Morrison, S.R., Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
Heising, J., Kanatzidis, M.G., J. Am. Chem. Soc. 121, 638 (1999).CrossRefGoogle Scholar
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M., ACS Nano 6, 7311 (2012).CrossRefGoogle Scholar
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M., Nano Lett. 11, 5111 (2011).CrossRefGoogle Scholar
Qian, X., Liu, J., Fu, L., Li, J., Science 346, 1344 (2014).CrossRefGoogle Scholar
Schönfeld, B., Huang, J., Moss, S., Acta Crystallogr. B Struct. Sci. 39, 404 (1983).CrossRefGoogle Scholar
Calandra, M., Phys. Rev. B Condens. Matter 88, 245428 (2013).CrossRefGoogle Scholar
Kan, M., Wang, J., Li, X., Zhang, S., Li, Y., Kawazoe, Y., Sun, Q., Jena, P., J. Phys. Chem. C 118, 1515 (2014).CrossRefGoogle Scholar
Tsai, H.-L., Heising, J., Schindler, J.L., Kannewurf, C.R., Kanatzidis, M.G., Chem. Mater. 9, 879 (1997).CrossRefGoogle Scholar
Yang, D., Frindt, R., J. Phys. Chem. Solids 57, 1113 (1996).CrossRefGoogle Scholar
Heising, J., Kanatzidis, M.G., J. Am. Chem. Soc. 121, 11720 (1999).CrossRefGoogle Scholar
Joensen, P., Crozier, E., Alberding, N., Frindt, R., J. Phys. C Solid State Phys. 20, 4043 (1987).CrossRefGoogle Scholar
Sandoval, S.J., Yang, D., Frindt, R., Irwin, J., Phys. Rev. B Condens. Matter 44, 3955 (1991).CrossRefGoogle Scholar
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Nat. Mater. 12, 850 (2013).CrossRefGoogle Scholar
Enyashin, A.N., Seifert, G., Comput. Theor. Chem. 999, 13 (2012).CrossRefGoogle Scholar
Cheng, Y., Nie, A., Zhang, Q., Gan, L.-Y., Shahbazian-Yassar, R., Schwingenschlogl, U., ACS Nano 8, 11447 (2014).CrossRefGoogle Scholar
Enyashin, A.N., Yadgarov, L., Houben, L., Popov, I., Weidenbach, M., Tenne, R., Bar-Sadan, M., Seifert, G., J. Phys. Chem. C 115, 24586 (2011).CrossRefGoogle Scholar
Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K., Nat. Nanotechnol. 9, 391 (2014).CrossRefGoogle Scholar
Wang, L., Xu, Z., Wang, W., Bai, X., J. Am. Chem. Soc. 136, 6693 (2014).CrossRefGoogle Scholar
Kang, Y., Najmaei, S., Liu, Z., Bao, Y., Wang, Y., Zhu, X., Halas, N.J., Nordlander, P., Ajayan, P.M., Lou, J., Adv. Mater. 26, 6467 (2014).CrossRefGoogle Scholar
Duerloo, K.-A.N., Li, Y., Reed, E.J., Nat. Commun. 5, 4214 (2014).CrossRefGoogle Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 13, 1128 (2014).CrossRefGoogle Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Jen, W., Acerce, M., Torrel, S., Branch, B., Lei, S., Chen, W., Najmaei, S., APL Mater. 2, 092516 (2014).CrossRefGoogle Scholar
Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Nano Lett. 13, 6222 (2013).CrossRefGoogle Scholar
Iwasa, Y., Ye, J., Zhang, Y., Science 338, 1193 (2012).Google Scholar
Yuan, N.F., Mak, K.F., Law, K., Phys. Rev. Lett. 113, 097001 (2014).CrossRefGoogle Scholar
Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L., Jin, S., J. Am. Chem. Soc. 135, 10274 (2013).CrossRefGoogle Scholar
Mahler, B., Hoepfner, V., Liao, K., Ozin, G.A., J. Am. Chem. Soc. 136, 14121 (2014).CrossRefGoogle Scholar
Maitra, U., Gupta, U., De, M., Datta, R., Govindaraj, A., Rao, C., Angew. Chem. Int. Ed. 52, 13057 (2013).CrossRefGoogle Scholar
Wang, H., Lu, Z., Xu, S., Kong, D., Cha, J.J., Zheng, G., Hsu, P.-C., Yan, K., Bradshaw, D., Prinz, F.B., Cui, Y., Proc. Natl. Acad. Sci. U.S.A. 110, 19701 (2013).CrossRefGoogle Scholar
Whittingham, M.S., Gamble, F.R., Mater. Res. Bull. 10, 363 (1975).CrossRefGoogle Scholar
Dines, M.B., Mater. Res. Bull. 10, 287 (1975).CrossRefGoogle Scholar
Liang, Y., Feng, R., Yang, S., Ma, H., Liang, J., Chen, J., Adv. Mater. 23, 640 (2011).CrossRefGoogle Scholar
Xiao, J., Choi, D., Cosimbescu, L., Koech, P., Liu, J., Lemmon, J.P., Chem. Mater. 22, 4522 (2010).CrossRefGoogle Scholar
Bang, G.S., Nam, K.W., Kim, J.Y., Shin, J., Choi, J.W., Choi, S.-Y., ACS Appl. Mater. Interfaces 6, 7084 (2014).CrossRefGoogle Scholar
Chang, K., Chen, W., ACS Nano 5, 4720 (2011).CrossRefGoogle Scholar
Hwang, H., Kim, H., Cho, J., Nano Lett. 11, 4826 (2011).CrossRefGoogle Scholar
Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall’Agnese, Y., Rozier, P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., Gogotsi, Y., Science 341, 1502 (2013).CrossRefGoogle Scholar
Mashtalir, O., Naguib, M., Mochalin, V.N., Dall’Agnese, Y., Heon, M., Barsoum, M.W., Gogotsi, Y., Nat. Commun. 4, 1716 (2013).CrossRefGoogle Scholar
Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W., Adv. Mater. 23, 4248 (2011).CrossRefGoogle Scholar
Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., Barsoum, M.W., ACS Nano 6, 1322 (2012).CrossRefGoogle Scholar
Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Adv. Mater. 26, 992 (2014).CrossRefGoogle Scholar
Ghidiu, M., Lukatskaya, M.R., Zhao, M.-Q., Gogotsi, Y., Barsoum, M.W., Nature 516, 78 (2014).CrossRefGoogle Scholar
Cao, L., Yang, S., Gao, W., Liu, Z., Gong, Y., Ma, L., Shi, G., Lei, S., Zhang, Y., Zhang, S., Small 9, 2905 (2013).CrossRefGoogle Scholar
Soon, J.M., Loh, K.P., Electrochem. Solid-State Lett. 10, A250 (2007).CrossRefGoogle Scholar
da Silveira Firmiano, E.G., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Schreiner, W.H., Leite, E.R., Adv. Energy Mater. 4, 1301380 (2014).CrossRefGoogle Scholar
Ratha, S., Rout, C.S., ACS Appl. Mater. Interfaces 5, 11427 (2013).CrossRefGoogle Scholar
Wang, Z., Chen, T., Chen, W., Chang, K., Ma, L., Huang, G., Chen, D., Lee, J.Y., J. Mater. Chem. A 1, 2202 (2013).CrossRefGoogle Scholar
Cao, X., Shi, Y., Shi, W., Rui, X., Yan, Q., Kong, J., Zhang, H., Small 9, 3433 (2013).CrossRefGoogle Scholar
David, L., Bhandavat, R., Singh, G., ACS Nano 8, 1759 (2014).CrossRefGoogle Scholar
Peng, X., Peng, L., Wu, C., Xie, Y., Chem. Soc. Rev. 43, 3303 (2014).CrossRefGoogle Scholar
Luo, B., Fang, Y., Wang, B., Zhou, J., Song, H., Zhi, L., Energy Environ. Sci. 5, 5226 (2012).CrossRefGoogle Scholar
Wang, X., Shen, X., Wang, Z., Yu, R., Chen, L., ACS Nano 8, 11394 (2014).CrossRefGoogle Scholar
Mortazavi, M., Wang, C., Deng, J., Shenoy, V.B., Medhekar, N.V., J. Power Sources 268, 279 (2014).CrossRefGoogle Scholar
Wang, Y.-X., Seng, K.H., Chou, S.-L., Wang, J.-Z., Guo, Z., Wexler, D., Liu, H.-K., Dou, S.-X., Chem. Commun. 50, 10730 (2014).CrossRefGoogle Scholar
Ellis, B.L., Nazar, L.F., Curr. Opin. Solid State Mater. Sci. 16, 168 (2012).CrossRefGoogle Scholar
Acerce, M., Voiry, D., Chhowalla, M., Nat. Nanotechnol. 10, 313 (2015).CrossRefGoogle Scholar
Feng, J., Sun, X., Wu, C., Peng, L., Lin, C., Hu, S., Yang, J., Xie, Y., J. Am. Chem. Soc. 133, 17832 (2011).CrossRefGoogle Scholar
Tributsch, H., Bennett, J., J. Electroanal. Chem. Interfacial Electrochem. 81, 97 (1977).CrossRefGoogle Scholar
Tributsch, H., Ber. Bunsenges Phys. Chem. 81, 361 (1977).CrossRefGoogle Scholar
Hinnemann, B., Moses, P.G., Bonde, J., Jørgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., Nørskov, J.K., J. Am. Chem. Soc. 127, 5308 (2005).CrossRefGoogle Scholar
Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I., Science 317, 100 (2007).CrossRefGoogle Scholar
Bonde, J., Moses, P.G., Jaramillo, T.F., Nørskov, J.K., Chorkendorff, I., Faraday Discuss. 140, 219 (2009).CrossRefGoogle Scholar
Merki, D., Vrubel, H., Rovelli, L., Fierro, S., Hu, X., Chem. Sci. 3, 2515 (2012).CrossRefGoogle Scholar
Kibsgaard, J., Chen, Z., Reinecke, B.N., Jaramillo, T.F., Nat. Mater. 11, 963 (2012).CrossRefGoogle Scholar
Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., Cui, Y., Nano Lett. 13, 1341 (2013).CrossRefGoogle Scholar
Chen, Z., Cummins, D., Reinecke, B.N., Clark, E., Sunkara, M.K., Jaramillo, T.F., Nano Lett. 11, 4168 (2011).CrossRefGoogle Scholar
Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H., J. Am. Chem. Soc. 133, 7296 (2011).CrossRefGoogle Scholar
Liao, L., Zhu, J., Bian, X., Zhu, L., Scanlon, M.D., Girault, H.H., Liu, B., Adv. Funct. Mater. 23, 5326 (2013).CrossRefGoogle Scholar
Firmiano, E.G., Cordeiro, M.A., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Leite, E.R., Chem. Commun. 48, 7687 (2012).CrossRefGoogle Scholar
Yang, J., Voiry, D., Ahn, S.J., Kang, D., Kim, A.Y., Chhowalla, M., Shin, H.S., Angew. Chem. Int. Ed. 52, 13751 (2013).CrossRefGoogle Scholar
Merki, D., Fierro, S., Vrubel, H., Hu, X., Chem. Sci. 2, 1262 (2011).CrossRefGoogle Scholar
Vrubel, H., Merki, D., Hu, X., Energy Environ. Sci. 5, 6136 (2012).CrossRefGoogle Scholar
Chang, Y.H., Lin, C.T., Chen, T.Y., Hsu, C.L., Lee, Y.H., Zhang, W., Wei, K.H., Li, L.J., Adv. Mater. 25, 756 (2013).CrossRefGoogle Scholar
Chen, T.-Y., Chang, Y.-H., Hsu, C.-L., Wei, K.-H., Chiang, C.-Y., Li, L.-J., Int. J. Hydrogen Energy 38, 12302 (2013).CrossRefGoogle Scholar
Huang, X., Zeng, Z., Bao, S., Wang, M., Qi, X., Fan, Z., Zhang, H., Nat. Commun. 4, 1444 (2013).CrossRefGoogle Scholar
Faber, M.S., Dziedzic, R., Lukowski, M.A., Kaiser, N.S., Ding, Q., Jin, S., J. Am. Chem. Soc. 136, 10053 (2014).CrossRefGoogle Scholar
Faber, M.S., Lukowski, M.A., Ding, Q., Kaiser, N.S., Jin, S., J. Phys. Chem. C 118, 21347 (2014).CrossRefGoogle Scholar
Peng, S., Li, L., Han, X., Sun, W., Srinivasan, M., Mhaisalkar, S.G., Cheng, F., Yan, Q., Chen, J., Ramakrishna, S., Angew. Chem. Int. Ed. 53, 12594 (2014).CrossRefGoogle Scholar
Wang, D.-Y., Gong, M., Chou, H.-L., Pan, C.-J., Chen, H.-A., Wu, Y., Lin, M.-C., Guan, M., Yang, J., Chen, C.-W., J. Am. Chem. Soc. 137, 1587 (2015).CrossRefGoogle Scholar
Tang, C., Pu, Z., Liu, Q., Asiri, A.M., Sun, X., Electrochim. Acta 153, 508 (2015).CrossRefGoogle Scholar
Kong, D., Cha, J.J., Wang, H., Lee, H.R., Cui, Y., Energy Environ. Sci. 6, 3553 (2013).CrossRefGoogle Scholar
Chang, H.-Y., Yang, S., Lee, J., Tao, L., Hwang, W.-S., Jena, D., Lu, N., Akinwande, D., ACS Nano 7, 5446 (2013).CrossRefGoogle Scholar
Das, S., Chen, H.-Y., Penumatcha, A.V., Appenzeller, J., Nano Lett. 13, 100 (2012).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M.L., Li, L.-J., Dubey, M., Kong, J., Palacios, T., Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
Yoon, Y., Ganapathi, K., Salahuddin, S., Nano Lett. 11, 3768 (2011).CrossRefGoogle Scholar
Kim, S., Konar, A., Hwang, W.-S., Lee, J.H., Lee, J., Yang, J., Jung, C., Kim, H., Yoo, J.-B., Choi, J.-Y., Nat. Commun. 3, 1011 (2012).CrossRefGoogle Scholar
Peelaers, H., Van de Walle, C.G., Phys. Rev. B Condens. Matter 86, 241401 (2012).CrossRefGoogle Scholar
Yu, L., Lee, Y.-H., Ling, X., Santos, E.J.G., Shin, Y.C., Lin, Y., Dubey, M., Kaxiras, E., Kong, J., Wang, H., Palacios, T., Nano Lett. 14, 3055 (2014).CrossRefGoogle Scholar
Roy, T., Tosun, M., Kang, J.S., Sachid, A.B., Desai, S.B., Hettick, M., Hu, C.C., Javey, A., ACS Nano 8, 6259 (2014).CrossRefGoogle Scholar
Lee, Y.T., Choi, K., Lee, H.S., Min, S.W., Jeon, P.J., Hwang, D.K., Choi, H.J., Im, S., Small 10, 2356 (2014).CrossRefGoogle ScholarPubMed