Article contents
Pattern Formation During the Growth of Liquid Crystal Phases
Published online by Cambridge University Press: 29 November 2013
Extract
Liquid crystals, discovered just a century ago, have wide application to electrooptic displays and thermography. Their physical properties have also made them fascinating materials for more fundamental research.
The name “liquid crystals” is actually a misnomer for what are more properly termed “mesophases,” that is, phases having symmetries intermediate between ordinary solids and liquids. There are three major classes of liquid crystals: nematics, smectics, and columnar mesophases. In nematics, although there is no correlation between positions of the rodlike molecules, the molecules tend to lie parallel along a common axis, labeled by a unit vector (or director) n. Smectics are more ordered. The molecules are also rodlike and are in layers. Different subtypes of smectics (labeled, for historical reasons, smectic A, smectic B,…) have layers that are more or less organized. In the smectic A phase, the layers are fluid and can glide easily over each other. In the smectic B phase, the layers have hexagonal ordering and strong interlayer corrélations. Indeed, the smectic B phase is more a highly anisotropic plastic crystal than it is a liquid crystal. Finally, columnar mesophases are obtained with disklike molecules. These molecules can stack up in columns which are themselves organized in a two-dimensional array. There is no positional correlation between molecules in one column and molecules in the other columns.
- Type
- Complex Materials
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
- 17
- Cited by