Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T14:22:40.209Z Has data issue: false hasContentIssue false

Overview of Cast Multicrystalline Silicon Solar Cells

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Worldwide environmental problems such as the greenhouse effect and acid rain have been caused by the human race's continuous reliance on the combustion of petroleum for fuel.

Solar energy, which is clean and practically unlimited, is expected to be a desirable alternate energy source to conventional power supplies, and demand for the photovoltaic system has increased throughout the world, especially in Europe and the United States.

Photovoltaic cells are probably the most effective method for capturing solar energy, since they are easy to use and are the most effective means of directly generating electricity.

Many kinds of solar cells have been developed in past years, especially since the first oil crisis in 1973. Among them, solar cells from cast multicrystalline silicon (also refereed to as (cast) polycrystalline silicon or semicrystalline silicon) are considered to be one of the most promising types, capable of achieving both high efficiency and low cost.

In 1975, Wacker proposed a new manufacturing method for silicon substrates, using the casting method. Since then, many organizations have been involved in the research and development of multicrystalline ingots and solar cells using multicrystalline silicon substrates.

Multicrystalline silicon substrates contain many kinds of defects compared to single-crystal silicon substrates, so the efficiency of multicrystalline silicon solar cells has been inferior to that of single-crystal cells. Recent research on multicrystalline silicon solar cells has resulted in substantial improvements and in the demonstration of high-efficiency cells.

Type
Materials for Photovoltaics
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Authier, B.A., German Patent (DOS) No. 25 08 803 (1975).CrossRefGoogle Scholar
2.Watanabe, H., Proc. 4th PVSEC, Sydney (1989) p. 103.Google Scholar
3.Narayanan, S., Wenham, S.R., and Green, M.A., Proc. 4th PVSEC, Sydney (1989) p. 111.Google Scholar
4.Machida, T., Nishida, M., Nammori, T., Nunoi, T., and Sawai, H., 4th Sunshine Workshop on Crystalline Silicon Solar Cells, Makuhari (1992) S45.Google Scholar
5.Fukui, K., Takayama, M., Shirasawa, K., and Watanabe, H., 4th Sunshine Workshop on Crystalline Silicon Solar Cells, Makuhari (1992) S4–3.Google Scholar
6.Helmreich, D., Knobel, R.M., and Ermer, W., Proc. 20th IEEE PVSC, Las Vegas (1988) p. 1390.Google Scholar
7.Lindmayer, L., Proc. 12th IEEE PVSC, Baton Rouge (1976) p. 82.Google Scholar
8.Brenneman, B.K. and Tomlinson, T.A., Proc. 20th IEEE PVSC, Las Vegas (1988) p. 1395.Google Scholar
9.Khattak, C.P. and Schmid, F., Proc. 13th IEEE PVSC, Washington (1978) p. 137.Google Scholar
10.Khattak, C.D., Schmid, F., Cunningham, D.W., and Summers, J.G., Proc. 22th IEEE PVSC, Las Vegas (1991) p. 976.Google Scholar
11.Ciszek, T.F., Schwuttke, G.H., and Young, K.H., J. Cryst. Growth 46 (1979) p. 527.CrossRefGoogle Scholar
12.Fally, J. and Guenel, C., Proc. 3rd EC PVSEC, Cannes (1980) p. 598.Google Scholar
13.Claverie, A. (private communication).Google Scholar
14.Saito, T., Shimura, A., and Ichikawa, S., Proc. 15th IEEE PVSC, Kissimmee (1981) p. 576.Google Scholar
15.Kaneko, K., Misawa, T., Asai, M., Nishida, K., Suzuki, A., Shimokawa, R., Yasutake, K., and Kawabe, H., Proc. 3rd PVSEC, Tokyo (1987) p. 810.Google Scholar
16.Hukin, D.A., Abst. 10th EC PVSEC, Lisbon (1991) 2a.22.Google Scholar
17.Ciszek, T.F., J. Electrochem. Soc. 132 (1985) p. 963.CrossRefGoogle Scholar
18.Hukin, D.A., Proc. 4th PVSEC, Sydney (1989) p. 719.Google Scholar
19.Kaneko, K., Misawa, T., and Tabata, K., Proc. 21st IEEE PVSC, Kissimmee (1990) p. 674.Google Scholar
20.Kaneko, K., Misawa, T., and Tabata, K., Proc. 5th PVSEC, Kyoto (1990) p. 201.Google Scholar
21.Fischer, H. and Pschunder, W., Proc. 12th IEEE PVSC, Baton Rouge (1976) p. 86.Google Scholar
22.Boiler, H.W. and Ebner, W., Proc. 9th EC PVSEC, Freiburg (1989) p. 411.Google Scholar
23.Storti, G.M., Proc. 15th IEEE PVSC, Kissimmee (1981) p. 442.Google Scholar
24.Johnson, S.M. and Winter, C., Proc. 17th IEEE PVSC, Kissimee (1984) p. 1121.Google Scholar
25.Khattak, C.P. and Schmid, F., Proc. 2nd EC PVSEC, Berlin (1979) p. 106.Google Scholar
26.Yoo, H.I. and Liu, J.K., Proc. 3rd EC PVSEC, Cannes (1980) p. 548.Google Scholar
27.Schmid, F. and Khattak, C.P., Proc. 5th EC PVSEC, Athens (1983) p. 1019.Google Scholar
28.Fally, J., Fabre, E., and Chabot, B., Rev. Phys. 22 (1987) p. 529.Google Scholar
29.Coppye, J., Ghannam, M., Szlufcik, J., Elgamel, M.E., Nijs, J., Nam, L.Q., and Rodot, M., Proc. 22nd IEEE PVSC, Las Vegas (1991) p. 1020.Google Scholar
30.Narayanan, S., Zolper, J., Yun, F., Wenham, S.R., Sproul, A.B., Chong, C.M., and Green, M.A., Proc. 21st IEEE PVSC, Kissimme (1990) p. 678.Google Scholar
31.Masuri, K., Digest of the Research Forum on High Efficiency Crystalline Silicon Solar Cells, Tecunoba Co., Ltd., Tokyo (1989) p. 87.Google Scholar
32.Warabisako, T., Matsukuma, K., Kokunai, S., Kida, Y., Uematsu, T., Ohtsuka, H., and Yagi, H., Abst. 11th EC PVSEC, Montreux (1992) 05.05.Google Scholar
33.Jaeger, K., Hoffmann, W., Wilhelm, K., and Hezel, R., Proc. 22nd IEEE PVSC, Las Vegas (1992) p. 992.Google Scholar
34.Rohatgi, A., Sana, P., and Salam, J., Abst. 11th EC PVSEC, Montreux (1992) 05.02.Google Scholar
35.Nijs, J., Ghannam, M., Coppye, J., Palmers, G., Nam, L.Q., Rodot, M., Sivoththaman, S., and Sarti, D., Abst. 11th EC PVSEC, Montreux (1992) 05.03.Google Scholar
36.ENE (Energies Nouvelles et Environnement), 9th EC PVSE C, Freiburg (1989) late news.Google Scholar
37.Kimura, K., Proc. 1st PVSEC, Kobe (1984) p. 37.Google Scholar