Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T23:56:23.677Z Has data issue: false hasContentIssue false

Organic Thin-Film Memory

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recently, organic nonvolatile memory devices have attracted considerable attention due to their low cost and high performance. This article reviews recent developments in organic nonvolatile memory and describes in detail an organic electrical bistable device (OBD) that has potential for applications. The OBD consists of a tri-layer of organics/metal nanoclusters/organics sandwiched between top and bottom electrodes. A sufficiently high applied bias causes the metal nanoparticle layer to become polarized, resulting in charge storage near the two metal/organic interfaces. This stored charge lowers the resistance of the device and leads to an electrical switching behavior. The ON and OFF states of an OBD differ in their conductivity by several orders of magnitude and show remarkable bistability—once either state is reached, the device tends to remain in that state for a prolonged period of time. More important, the conductivity states of an OBD can be precisely controlled by the application of a positive voltage pulse (to write) or a negative voltage pulse (to erase). Device performance tests show that the OBD is a promising candidate for high-density, low-cost electrically addressable data storage applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Scott, J. Campbell, Science 304 (2004) p. 62.CrossRefGoogle ScholarPubMed
2Ma, L.P.Yang, W.J.Xie, S.S. and Pang, S.J.Appl. Phys. Lett. 73 (1998) p. 3303; M.I. Lutwyche, M. Despont, U. Drechsler U. Dürig, W. Haberle, H. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, and P. Vettiger, Appl. Phys. Lett. 77 (2000) p. 3299.CrossRefGoogle Scholar
3, Li-Jie, Schreck, E. and Dransfeld, K.Appl. Phys. A 53 (1991) p. 457.CrossRefGoogle Scholar
4Potember, R.S. and Poehler, T.O.Appl. Phys. Lett. 34 (1979) p. 407.CrossRefGoogle Scholar
5Carchano, H.Lacoste, R. and Segui, Y.Appl. Phys. Lett. 19 (1971) p. 414.CrossRefGoogle Scholar
6Henish, H.K. and Smith, W.R.Appl. Phys. Lett. 24 (1974) p. 589.CrossRefGoogle Scholar
7Segui, Y.Ai, Bui, and Carchano, H.J. Appl. Phys. 47 (1976) p. 140.CrossRefGoogle Scholar
8Carchano, H.Lacoste, R. and Segui, Y.Appl. Phys. Lett. 19 (1979) p. 414.CrossRefGoogle Scholar
9Oyamada, T.Tanaka, H.Matsushige, K.Sasabe, H. and Adachi, C.Appl. Phys. Lett. 83 (2003) p. 1252.CrossRefGoogle Scholar
10Bandyopadhyay, A. and Pal, A.J.Appl. Phys. Lett. 82 (2003) p. 1215.CrossRefGoogle Scholar
11Moller, S.Perlov, C.Jackson, W.Taussig, C. and Forrest, S.R.Nature 426 (2003) p. 166.CrossRefGoogle Scholar
12Moller, S.Forrest, S.R.Perlov, C.Jackson, W. and Taussig, C.J. Appl. Phys. 94 (2003) p. 7811.CrossRefGoogle Scholar
13Ma, L.P.Xu, Q.F. and Yang, Y.Appl. Phys. Lett. 84 (2004) p. 4908.CrossRefGoogle Scholar
14Yang, Y.Ma, L.P. and Liu, J. U.S. Patent Pending, US 01/17206 (2001).Google Scholar
15Ma, L.P.Liu, J.Pyo, S.M. and Yang, Y.Appl. Phys. Lett. 80 (2002) p. 362.CrossRefGoogle Scholar
16Ma, L.P.Liu, J. and Yang, Y.Appl. Phys. Lett. 80 (2002) p. 2997.CrossRefGoogle Scholar
17Ma, L.P.Liu, J.Pyo, S.M.Xu, Q.F. and Yang, Y.Mol. Cryst. Liq. Cryst. 378 (2002) p. 185.CrossRefGoogle Scholar
18Ma, L.P.Pyo, S.M.Xu, Q.F. and Yang, Y.Appl. Phys. Lett. 82 (2003) p. 1419.CrossRefGoogle Scholar
19Hubbard, J.Proc. R. Soc. London Ser. A 276 (1963) p. 238; J.H. Wu, L.P. Ma, and Y. Yang, Phys. Rev. B 69 (2004) p. 11531.Google Scholar
20Bozano, L.D.Kean, B.W.Deline, V.R.Salem, J.R. and Scott, J.C.Appl. Phys. Lett. 26 (2004) p. 607.CrossRefGoogle Scholar
21Jabbour, G. private communication.Google Scholar
22Collier, C.P.Mattersteig, G.Wong, E.W.Luo, Y.Beverly, K.Sampaio, J.Raymo, F.M.Stoddart, J.F. and Heath, J.R.Science 289 (2000) p. 1172.CrossRefGoogle Scholar
23Pease, A.R.Jeppesen, J.O.Stoddart, J.F.Luo, Y.Collier, C.P. and Heath, J.R.Acc. Chem. Res. 34 (2001) p. 433.CrossRefGoogle Scholar
24Chen, Y.Ohlberg, D.A.A.Li, X.Stewart, D.R.Williams, R.S.Jeppesen, J.O.Nielsen, K.A.Stoddart, J.F.Olynick, D.L. and Anderson, E.Appl. Phys. Lett. 82 (2003) p. 1610.CrossRefGoogle Scholar
25Reed, M.A.Chen, J.Rawlett, A.M.Price, D.W. and Tour, J.M.Appl. Phys. Lett. 78 (2001) p. 3735.CrossRefGoogle Scholar
26Seminario, J.M.Zacarias, A.G. and Tour, J.M.J. Am. Chem. Soc. 122 (2000) p. 3015.CrossRefGoogle Scholar
27Seminario, J.M.Zacarias, A.G. and Derosa, P.A.J. Phys. Chem. A 105 (2001) p. 791.CrossRefGoogle Scholar
28Cornil, J.Karzazi, Y. and Bredas, J.L.J. Am. Chem. Soc. 124 (2002) p. 3516.CrossRefGoogle Scholar
29Taylor, J.Brandbyge, M. and Stokbro, K.Phys. Rev. B 68 121101 (2003).CrossRefGoogle Scholar