Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:45:01.505Z Has data issue: false hasContentIssue false

Optoelectronic Properties and Applications of Rare-Earth-Doped GaN

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

As discussed in the accompanying articles in this issue of MRS Bulletin, the optical properties of rare-earth (RE) elements have led to many important photonic applications, including solid-state lasers, components for telecommunications (optical-fiber amplifiers, fiber lasers), optical storage devices, and displays. In most of these applications, the host materials for the RE elements are various forms of oxide and nonoxide glasses. The emission can occur at visible or infrared (IR) wavelengths, depending on the electronic transitions of the selected RE element and the excitation mechanism. Until recently, the study of semiconductors doped with RE elements such as Pr and Er has concentrated primarily on the lowest excited state as an optically active transition. The presence of transitions at IR wavelengths (1.3 and 1.54 μm) that are coincident with minima in the optical dispersion and the loss of silica-based glass fibers utilized in telecommunications, combined with the prospect of integration with semiconductor device technology, has sparked considerable interest.

The status and prospects of obtaining stimulated emission in Si:Er are reviewed by Gregorkiewicz and Langer in this issue and by Coffa et al. in a previous MRS Bulletin issue. While great progress is being made in enhancing the emission intensity of Er-doped Si, it still experiences significant loss in luminescence efficiency at room temperature, as compared with low temperatures. This thermal quenching was shown by Favennec et al. to de crease with the bandgap energy of the semiconductor. Hence wide-bandgap semiconductors (WBGSs) are attractive candidates for investigation as hosts for RE doping.

Type
Photonic Applications of Rare-Earth-Doped Materials
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Coffa, S., Franzà, G., and Priolo, F., MRS Bull. 23 (4) (1998) p. 25.CrossRefGoogle Scholar
2.Favennec, P.N., L'Haridon, H., Salvi, M., Moutonnet, D., and Le Guillou, Y., Electron. Lett. 25 (1989) p. 718.CrossRefGoogle Scholar
3.Neuberger, M., Il-VI Ternary Compound Data Tables, EPIC-S-15 (Electronic Properties Information Center, Hughes Aircraft, Culver City, CA, 1972).Google Scholar
4.Madelung, O., Semiconductors, Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
5.Madelung, O., Semiconductors, Basic Data, 2nd ed. (Springer-Verlag, Berlin, 1996).CrossRefGoogle Scholar
6.Zavada, J.M. and Zhang, D., Solid-State Electron. 38 (1995) p. 1285.CrossRefGoogle Scholar
7.Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer-Verlag, Berlin, 1997).CrossRefGoogle Scholar
8.Morkoç, H., Nitride Semiconductors and Devices (Springer-Verlag, Berlin, 1999) in press.CrossRefGoogle Scholar
9.Dieke, G.H., Spectra and Energy Levels of Rare Earth Ions in Crystals, edited by Crosswhite, H.M. and Crosswhite, H. (Wiley Inter-science, New York, 1968).Google Scholar
10.Wilson, R.G., Schwartz, R.N., Aber-nathy, C.R., Pearton, S.J., Newman, N., Rubin, M., Fu, T., and Zavada, J.M., Appt. Phys. Lett. 65 (1994) p. 992.CrossRefGoogle Scholar
11.Torvik, J.T., Feuerstein, R.J., Pankove, J.I., Qiu, C.H., and Namavar, F., Appl. Phys. Lett. 69 (1996) p. 2098.CrossRefGoogle Scholar
12.Kim, S., Rhee, S.J., Turnbull, D.A., Reuter, E.E., Li, X., Coleman, J.J., and Bishop, S.G., Appl. Phys. Lett. 71 (1997) p. 231.CrossRefGoogle Scholar
13.Hansen, D.M., Zhang, R., Perkins, N.R., Safvi, S., Zhang, L., Bray, K.L., and Kuech, T.F., Appl. Phys. Lett. 72 (1997) p. 1244.CrossRefGoogle Scholar
14.Steckl, A.J. and Birkhahn, R., Appl. Phys. Lett. 73 (1998) p. 1702.Google Scholar
15.Birkhahn, R. and Steckl, A.J., Appl. Phys. Lett. 73 (1998) p. 2143.CrossRefGoogle Scholar
16.Steckl, A.J., Garter, M., Birkhahn, R., and Scofield, J., Appl. Phys. Lett. 73 (1998) p. 2450.CrossRefGoogle Scholar
17.Garter, M., Scofield, J., Birkhahn, R., and Steckl, A.J, Appl. Phys. Lett. 74 (1999) p. 182.CrossRefGoogle Scholar
18.Birkhahn, R., Garter, M., and Steckl, A.J., Appl. Phys. Lett. 74 (1999) p. 2161.CrossRefGoogle Scholar
19.Heikenfeld, J., Garten, M.Lee, D.S., Birkhahn, R., and Steckl, A.J., Appl. Phys. Lett. 75 (9) (1999) p. 1189.CrossRefGoogle Scholar
20.Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., and Birkhahn, R., Appl. Phys. Lett. 75 (15) (1999).CrossRefGoogle Scholar
21.Birkhahn, R., Garter, M., Heikenfeld, J., Lee, D.S., and Steckl, A.J. (unpublished).Google Scholar
22.Lozykowski, H., Jadwisienczack, W.M., and Brown, I.M., Appl. Phys. Lett. 74 (8) (1999) p. 1129.CrossRefGoogle Scholar
23.Thaik, M., Hömmerich, U., Schwartz, R.N., Wilson, R.G., and Zavada, J.M., Appl. Phys. Lett. 71 (1997) p. 2641.CrossRefGoogle Scholar
24.Choyke, W.J., Devaty, R.P., Clemen, L.L., Yoganathan, M., Pensl, G., and Hassler, Ch., Appl. Phys. Lett. 65 (1994) p. 1668.CrossRefGoogle Scholar
25.Birkhahn, R., Hudgins, R., Lee, D.S., Steckl, A.J., Molnar, R.J., Saleh, A., and Zavada, J.M.J. Vac. Sci. Technol, B 17 (1999) p. 1195.CrossRefGoogle Scholar
26.Birkhahn, R., Hudgins, R., Lee, D.S., Steckl, A.J., Saleh, A., Wilson, R.G., and Zavada, J.M., MRS Internet J. Nitride Semicond. Res. 4S1, G3.80 (1999), available from http://nsr.mij.mrs.org/2/5/.Google Scholar
27.Garter, M., Birkhahn, R., Steckl, A.J., and Scofield, J., MRS Internet J. Nitride Semicond. Res. 4S1, G11.3 (1999), available from http://nsr.mij.mrs.org/2/5/.Google Scholar
28.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34 (1995) p. L797.CrossRefGoogle Scholar
29.Steckl, A.J., in Proc. Advanced Workshop on Frontiers in Electronics cat. No. 97TH8292 (Institute of Electronic and Electrical Engineering, Piscataway, NJ, 1997) p. 47.Google Scholar
30.Steckl, A.J. and Chyr, I., J. Vac. Sci. Technol., B 17 (1999) p. 362.CrossRefGoogle Scholar
31.Chao, L.C. and Steckl, A.J., J. Vac. Sci. Technol., B 17 (1999) p. 1051.Google Scholar
32.Chao, L.C. and Steckl, A.J. (unpublished).Google Scholar
33.Chao, L.C. and Steckl, A.J., Appl. Phys. Lett. 74 (1999) p. 2364.CrossRefGoogle Scholar
34.Zavada, J.M., Mair, R.A., Ellis, C.J., Lin, J.Y., Jiang, H.X., Wilson, R.G., Grudowski, P.A., and Dupuis, R.D., Appl. Phys. Lett. 75 (1999) p. 790.CrossRefGoogle Scholar
35.Hunt, R.W.G., Measuring Color, 2nd ed. (Ellis Harwood, UK, 1991).Google Scholar