Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T14:47:22.977Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance Studies of Lithium-Ion Battery Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy has been employed to characterize a variety of phenomena that are central to the functioning of lithium and lithium-ion batteries. These include Li insertion and de-insertion mechanisms in carbonaceous and other anode materials and in transition-metal oxide cathodes, and ion-transport mechanisms in polymer and gel electrolytes. Investigations carried out over the last several years by the authors and other groups are reviewed in this article. Results for lithium manganese oxide spinel cathodes, carbon-based and SnO anodes, and polymer and gel electrolytes are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gaudin, E., Taulelle, F., Stoyanova, R., Zhecheva, E., Alcantara, R., Lavela, P., and Tirado, J.L., J. Phys. Chem. B 105 (2001) p. 8081.Google Scholar
2.Stejskal, E.O. and Tanner, J.E., J. Chem. Phys. 42 (1965) p. 288.Google Scholar
3.Marichal, C., Hirschinger, J., Granger, P., Ménétrier, M., Rougier, A., and Delmas, C., Inorg. Chem. 34 (1995) p. 1773.CrossRefGoogle Scholar
4.Carlier, D., Ménétrier, M., and Delmas, C., J. Mater. Chem. 11 (2001) p. 594.Google Scholar
5.Morgan, K.R., Collier, S., Burns, G., and Ooi, K., J. Chem. Soc., Chem. Commun. (1994) p. 1719.Google Scholar
6.Gee, B., Horne, C.R., Cairns, E.J., and Reimer, J.A., J. Phys. Chem. B 102 (1998) p. 10142.CrossRefGoogle Scholar
7.Lee, Y.J., Wang, F., and Grey, C.P., J. Am. Chem. Soc. 120 (1998) p. 12601.Google Scholar
8.Verhoeven, V.W.J., de Schepper, I.M., Nachtegaal, G., Kentgens, A.P.M., Kelder, E.M., Schoonman, J., and Mulder, F.M., Phys. Rev. Lett. 86 (2001) p. 4314.CrossRefGoogle Scholar
9.Rozier, P., Savariault, J.M., Galy, J., Marichal, C., Hirschinger, J., and Granger, P., Eur. J. Solid State Inorg. Chem. 33 (1996) p. 1.Google Scholar
10.Stallworth, P.E., Johnson, F.S., Greenbaum, S.G., Passerini, S., Flowers, J., Smyrl, W., and Fontanella, J.J., Solid State Ionics 146 (2002) p. 43.Google Scholar
11.Gaubicher, J., Wurm, C., Goward, G., Masquelier, C., and Nazar, L., Chem. Mater. 12 (2000) p. 3240.CrossRefGoogle Scholar
12.Tucker, M.C., Doeff, M.M., Richardson, T.J., Finones, R., Reimer, J.A., and Cairns, E.J., Electrochem. Solid-State Lett. 5 (2002) p. A95.CrossRefGoogle Scholar
13.Lee, Y.J. and Grey, C.P., J. Electrochem. Soc. 149 (2002) p. A103.CrossRefGoogle Scholar
14.Masquelier, C., Tabuchi, M., Ado, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O., and Goodenough, J.B., J. Solid State Chem. 123 (1996) p. 255.CrossRefGoogle Scholar
15.Tucker, M.C., Reimer, J.A., and Cairns, E.J., Electrochem. Solid-State Lett. 3 (2000) p. 463.Google Scholar
16.Tucker, M.C., Reimer, J.A., and Cairns, E.J., J. Electrochem. Soc. 148 (2001) p. A951.Google Scholar
17.Lee, Y.J. and Grey, C.P., Chem. Mater. 12 (2000) p. 3871.Google Scholar
18.Lee, Y.J., Park, S.H., Eng, C., Parise, J.B., and Grey, C.P., Chem. Mater. 14 (2002) p. 194.CrossRefGoogle Scholar
19.Pan, C., Lee, Y.J., Ammundsen, B., and Grey, C.P., Chem. Mater. 14 (2002) p. 2289.CrossRefGoogle Scholar
20.Conard, J. and Estrade, H., Mater. Sci. Eng. 31 (1977) p. 173.Google Scholar
21.Matsumura, Y., Wang, S., and Mondori, J., Carbon 33 (1995) p. 1457.Google Scholar
22.Imanishi, N., Kumai, K., Kokugan, H., Takeda, Y., and Yamamoto, O., Solid Sate Ionics 107 (1998) p. 135.Google Scholar
23.Smart, M.C., Ratnakumar, B.V., Surampudi, S., Zhang, X., Greenbaum, S.G., Hightower, A., Ahn, C.C., and Fultz, B., J. Electrochem. Soc. 146 (1999) p. 3963.CrossRefGoogle Scholar
24.Wang, Y., Guo, X., Greenbaum, S., Liu, J., and Amine, K., Electrochem. Solid-State Lett. 4 (2001) p. A68.CrossRefGoogle Scholar
25.Peled, E., J. Electrochem. Soc. 126 (1979) p. 2047.Google Scholar
26.Gerald, R.E. II, Sanchez, J., Johnson, C.S., Klingler, R.J., and Rathke, J.W., J. Phys.: Condens. Matter 13 (2001) p. 8269.Google Scholar
27.Zheng, T., Xing, W., and Dahn, J.R., Carbon 34 (1996) p. 1501.Google Scholar
28.Wang, S., Matsui, H., Matsumura, Y., and Yamabe, T., in Materials for Electrochemical Energy Storage and Conversion II: Batteries, Capacitors, and Fuel Cells, edited by Ginley, D.S., Doughty, D.H., Takamura, T., Zhang, Z., and Scrosati, B. (Mater. Res. Soc. Symp. Proc. 496, Warrendale, PA, 1998) p. 545.Google Scholar
29.Wang, Y., Yufit, V., Guo, X., Peled, E., and Greenbaum, S., J. Power Sources 94 (2001) p. 230.CrossRefGoogle Scholar
30.Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaki, T., Science 276 (1997) p. 1395.CrossRefGoogle Scholar
31.Courtney, I.A. and Dahn, J.R., J. Electrochem. Soc. 144 (1997) p. 2045.Google Scholar
32.Wang, Y., Sakamoto, J., Huang, C.K., Surampudi, S., and Greenbaum, S.G., Solid State Ionics 110 (1998) p. 167.Google Scholar
33.Wang, Y., Sakamoto, J., Kostov, S., Mansour, A.N., denBoer, M.L., Greenbaum, S.G., Huang, C.K., and Surampudi, S., J. Power Sources 89 (2000) p. 232.Google Scholar
34.Goward, G.R., Leroux, F., Power, W.P., Ouvrard, G., Dmowski, W., Egami, T., and Nazar, L.F., Electrochem. Solid-State Lett. 2 (1999) p. 367.CrossRefGoogle Scholar
35.Berthier, C., Gorecki, W., Minier, M., Armand, M.B., Chabagno, J.M., and Rigaud, P., Solid State Ionics 11 (1983) p. 91.Google Scholar
36.Chung, S.H., Jeffrey, K.R., and Stevens, J.R., J. Chem. Phys. 94 (1991) p. 1803.CrossRefGoogle Scholar
37.Donoso, J.P., Bonagamba, T.J., Panepucci, H.C., Oliveira, L.N., Gorecki, W., Berthier, C., and Armand, M., J. Chem. Phys. 98 (1993) p. 10026.CrossRefGoogle Scholar
38.Johansson, A. and Tegenfeldt, J., J. Chem. Phys. 104 (1996) p. 5317.CrossRefGoogle Scholar
39.Wong, S. and Zax, D.B., Electrochim. Acta 42 (1998) p. 3513.CrossRefGoogle Scholar
40.Zwanziger, J., DePaul, S.M., Ulrich, R., Wiesner, U., and Spiess, H.W., J. Am. Chem. Soc. 121 (1999) p. 5727.Google Scholar
41.Dai, Y., Greenbaum, S., Golodnitsky, D., Ardel, G., Strauss, E., Peled, E., and Rosenberg, Yu., Solid State Ionics 106 (1998) p. 25.Google Scholar
42.Ardel, G., Golodnitsky, D., Peled, E., Wang, Y., Wang, G., Bajue, S., and Greenbaum, S., Solid State Ionics 113–115 (1998) p. 477.Google Scholar
43.Chung, S.H., Wang, Y., Persi, L., Croce, F., Greenbaum, S.G., Scrosati, B., and Plichta, E., J. Power Sources 97–98 (2001) p. 644.Google Scholar
44.Chung, S.H., Wang, Y., Greenbaum, S.G., Golodnitsky, D., and Peled, E., Electrochem. SolidState Lett. 2 (1999) p. 553.Google Scholar
45.Golodnitsky, D., Livshits, E., Ulus, A., Barkay, Z., Lapides, I., Peled, E., Chung, S.H., and Greenbaum, S., J. Phys. Chem. A 105 (2001) p. 10098.Google Scholar
46.Gadjourova, Z., Andreev, Y.G., Tunstall, D.P., and Bruce, P.G., Nature 412 (2001) p. 520.Google Scholar
47.Stallworth, P.E., Greenbaum, S.G., Croce, F., Slane, S., and Salomon, M., Electrochim. Acta 40 (1995) p. 2137.Google Scholar
48.Hayamizu, K., Aihara, Y., Arai, S., and Price, W.S., Electrochim. Acta 45 (2000) p. 1313.Google Scholar
49.Reiche, A., Weinkaupf, A., Sandner, B., Rittig, F., and Fleischer, G., Electrochim. Acta 45 (2000) p. 1327.Google Scholar
50.Dai, H. and Zawodzinski, T.A., J. Electroanal. Chem. 459 (1998) p. 111.Google Scholar