Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:35:59.410Z Has data issue: false hasContentIssue false

Nonreciprocity in synthetic photonic materials with nonlinearity

Published online by Cambridge University Press:  11 June 2018

Weijian Chen
Affiliation:
Department of Electrical and Systems Engineering, Washington University in St. Louis, USA; [email protected]
Daniel Leykam
Affiliation:
Institute for Basic Science, South Korea; [email protected]
Y.D. Chong
Affiliation:
Nanyang Technological University, Singapore; [email protected]
Lan Yang
Affiliation:
Department of Electrical and Systems Engineering, Washington University in St. Louis, USA; [email protected]
Get access

Abstract

Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, such as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Soljačić, M., Luo, C., Joannopoulos, J.D., Fan, S., Opt. Lett. 28, 637 (2003).CrossRefGoogle Scholar
Fan, L., Wang, J., Varghese, L.T., Shen, H., Niu, B., Xuan, Y., Weiner, A.M., Qi, M., Science 335, 447 (2012).CrossRefGoogle Scholar
Fan, L., Varghese, L.T., Wang, J., Xuan, Y., Weiner, A.M., Qi, M., Opt. Lett. 38, 1259 (2013).CrossRefGoogle Scholar
Suchkov, S.V., Sukhorukov, A.A., Huang, J., Dmitriev, S.V., Lee, C., Kivshar, Y.S., Laser Photon. Rev. 10, 177 (2016).CrossRefGoogle Scholar
Konotop, V.V., Yang, J., Zezyulin, D.A., Rev. Mod. Phys. 88, 35002 (2016).CrossRefGoogle Scholar
Feng, L., El-Ganainy, R., Ge, L., Nat. Photonics 11, 752 (2017).CrossRefGoogle Scholar
El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N., Nat. Phys. 14, 11 (2018).CrossRefGoogle Scholar
Lu, L., Joannopoulos, J.D., Soljačić, M., Nat. Photonics 8, 821 (2014).CrossRefGoogle Scholar
Khanikaev, A.B., Shvets, G., Nat. Photonics 11, 763 (2017).CrossRefGoogle Scholar
Wu, Y., Li, C., Hu, X., Ao, Y., Zhao, Y., Gong, Q., Adv. Opt. Mater. 5, 1700357 (2017).CrossRefGoogle Scholar
Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O., Carusotto, I., Phys. Opt. (2018), https://arxiv.org/abs/1802.04173.Google Scholar
Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S., Yu, Z., Baets, R., Popović, M., Melloni, A., Joannopoulos, J.D., Vanwolleghem, M., Doerr, C.R., Renner, H., Nat. Photonics 7, 579 (2013).CrossRefGoogle Scholar
Bender, C., Rep. Prog. Phys. 70, 947 (2007).CrossRefGoogle Scholar
Kato, T., Perturbation Theory for Linear Operators (Springer, New York, 1995).CrossRefGoogle Scholar
Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A., Nat. Mater. 12, 108 (2012).CrossRefGoogle Scholar
Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U., Nature 488, 167 (2012).CrossRefGoogle Scholar
Peng, B., Ozdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L., Nat. Phys. 10, 394 (2014).CrossRefGoogle Scholar
Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M., Nat. Photonics 8, 524 (2014).CrossRefGoogle Scholar
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D.N., Khajavikhan, M., Science 346, 975 (2014).CrossRefGoogle Scholar
Feng, L., Wong, Z.J., Ma, R.-M., Wang, Y., Zhang, X., Science 346, 972 (2014).CrossRefGoogle Scholar
Peng, B., Ozdemir, S.K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C.M., Nori, F., Yang, L., Science 346, 328 (2014).CrossRefGoogle Scholar
Brandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H.E., Strasser, G., Unterrainer, K., Rotter, S., Nat. Commun. 5, 4034 (2014).CrossRefGoogle Scholar
Wong, Z.J., Xu, Y.L., Kim, J., O’Brien, K., Wang, Y., Feng, L., Zhang, X., Nat. Photonics 10, 796 (2016).CrossRefGoogle Scholar
Peng, B., Ozdemir, S.K., Liertzer, M., Chen, W., Kramer, J., Yilmaz, H., Wiersig, J., Rotter, S., Yang, L., Proc. Natl. Acad. Sci. U.S.A. 113, 6845 (2016).CrossRefGoogle Scholar
Wiersig, J., Phys. Rev. Lett. 112, 203901 (2014).CrossRefGoogle Scholar
Wiersig, J., Phys. Rev. A 93, 33809 (2016).CrossRefGoogle Scholar
Liu, Z.P., Zhang, J., Ozdemir, S.K., Peng, B., Jing, H., , X.Y., Li, C.W., Yang, L., Nori, F., Liu, Y.X., Phys. Rev. Lett. 117, 110802 (2016).CrossRefGoogle Scholar
Chen, W., Ozdemir, S.K., Zhao, G., Wiersig, J., Yang, L., Nature 548, 192 (2017).CrossRefGoogle Scholar
Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N., Khajavikhan, M., Nature 548, 187 (2017).CrossRefGoogle Scholar
Jing, H., Ozdemir, S.K., , X.Y., Zhang, J., Yang, L., Nori, F., Phys. Rev. Lett. 113, 53604 (2014).CrossRefGoogle Scholar
Xu, H., Mason, D., Jiang, L., Harris, J.G.E., Nature 537, 80 (2016).CrossRefGoogle Scholar
Bender, C.M., Boettcher, S., Phys. Rev. Lett. 80, 5243 (1998).CrossRefGoogle Scholar
Bender, C.M., Contemp. Phys. 46, 277 (2005).CrossRefGoogle Scholar
El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H., Opt. Lett. 32, 2632 (2007).CrossRefGoogle Scholar
Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N., Phys. Rev. Lett. 103, 093902 (2009).CrossRefGoogle Scholar
Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D., Nat. Phys. 6, 192 (2010).CrossRefGoogle Scholar
Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N., Phys. Rev. A 82, 43803 (2010).CrossRefGoogle Scholar
Zhou, X., Chong, Y.D., Opt. Express 24, 6916 (2016).CrossRefGoogle Scholar
Heiss, W.D., J. Phys. A Math. Theor. 45, 444016 (2012).CrossRefGoogle Scholar
Dembowski, C., Gräf, H.D., Harney, H.L., Heine, A., Heiss, W.D., Rehfeld, H., Richter, A., Phys. Rev. Lett. 86, 787 (2001).CrossRefGoogle Scholar
Gao, T., Estrecho, E., Bliokh, K.Y., Liew, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A., Nature 526, 554 (2015).CrossRefGoogle Scholar
Hahn, C., Choi, Y., Yoon, J.W., Song, S.H., Oh, C.H., Berini, P., Nat. Commun. 7, 12201 (2016).CrossRefGoogle Scholar
Uzdin, R., Mailybaev, A., Moiseyev, N., J. Phys. A Math. Theor. 44, 435302 (2011).CrossRefGoogle Scholar
Sounas, D.L., Alù, A., Nat. Photonics 11, 774 (2017).CrossRefGoogle Scholar
Doppler, J., Mailybaev, A.A., Böhm, J., Kuhl, U., Girschik, A., Libisch, F., Milburn, T.J., Rabl, P., Moiseyev, N., Rotter, S., Nature 537, 76 (2016).CrossRefGoogle Scholar
Ghosh, S.N., Chong, Y.D., Sci. Rep. 6, 19837 (2016).CrossRefGoogle Scholar
Choi, Y., Hahn, C., Yoon, J.W., Song, S.H., Berini, P., Nat. Commun. 8, 14154 (2017).CrossRefGoogle Scholar
Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R., Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2011).Google Scholar
Haldane, F.D.M., Raghu, S., Phys. Rev. Lett. 100, 013904 (2008).CrossRefGoogle Scholar
Raghu, S., Haldane, F.D.M., Phys. Rev. A At. Mol. Opt. Phys. 78, 033834 (2008).CrossRefGoogle Scholar
Bernevig, B.A., Hughes, T.L., Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).CrossRefGoogle Scholar
Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I., Phys. Rev. Lett. 111, 185301 (2013).CrossRefGoogle Scholar
Yang, Z., Gao, F., Shi, X., Lin, X., Gao, Z., Chong, Y., Zhang, B., Phys. Rev. Lett. 114, 114301 (2015).CrossRefGoogle Scholar
He, C., Ni, X., Ge, H., Sun, X.-C., Chen, Y.-B., Lu, M.-H., Liu, X.-P., Chen, Y.-F., Nat. Phys. 12, 1124 (2016).CrossRefGoogle Scholar
Huber, S.D., Nat. Phys. 12, 621 (2016).CrossRefGoogle Scholar
Wang, Z., Chong, Y., Joannopoulos, J.D., Soljačić, M., Phys. Rev. Lett. 100, 013905 (2008).CrossRefGoogle Scholar
Wang, Z., Chong, Y., Joannopoulos, J.D., Soljačić, M., Nature 461, 772 (2009).CrossRefGoogle Scholar
Hafezi, M., Demler, E.A., Lukin, M.D., Taylor, J.M., Nat. Phys. 7, 907 (2011).CrossRefGoogle Scholar
Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A., Nature 496, 196 (2013).CrossRefGoogle Scholar
Hafezi, M., Mittal, S., Fan, J., Migdall, A., Taylor, J.M., Nat. Photonics 7, 1001 (2013).CrossRefGoogle Scholar
Mittal, S., Fan, J., Faez, S., Migdall, A., Taylor, J.M., Hafezi, M., Phys. Rev. Lett. 113, 087403 (2014).CrossRefGoogle Scholar
Szameit, A., Nolte, S., J. Phys. B At. Mol. Opt. Phys. 43, 163001 (2010).CrossRefGoogle Scholar
Kraus, Y.E., Lahini, Y., Ringel, Z., Verbin, M., Zilberberg, O., Phys. Rev. Lett. 109, 106402 (2012).CrossRefGoogle Scholar
Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y.E., Silberberg, Y., Phys. Rev. B Condens. Matter 91, 064201 (2015).CrossRefGoogle Scholar
Maczewsky, L.J., Zeuner, J.M., Nolte, S., Szameit, A., Nat. Commun. 8, 13756 (2017).CrossRefGoogle Scholar
Noh, J., Huang, S., Leykam, D., Chong, Y.D., Chen, K., Rechtsman, M.C., Nat. Phys. 13, 611 (2017).CrossRefGoogle Scholar
Zilberberg, O., Huang, S., Guglielmon, J., Wang, M., Chen, K.P., Kraus, Y.E., Rechtsman, M.C., Nature 553, 59 (2018).CrossRefGoogle Scholar
Su, W.P., Schrieffer, J.R., Heeger, A.J., Phys. Rev. B Condens. Matter 22, 2099 (1980).CrossRefGoogle Scholar
El-Ganainy, R., Levy, M., Opt. Lett. 40, 5275 (2015).CrossRefGoogle Scholar
Hadad, Y., Khanikaev, A.B., Alu, A., Phys. Rev. B Condens. Matter 93, 155112 (2016).CrossRefGoogle Scholar
Hadad, Y., Vitelli, V., Alu, A., ACS Photonics 4, 1974 (2017).CrossRefGoogle Scholar
Leykam, D., Rechtsman, M.C., Chong, Y.D., Phys. Rev. Lett. 117, 013902 (2016).CrossRefGoogle Scholar
Lumer, Y., Plotnik, Y., Rechtsman, M.C., Segev, M., Phys. Rev. Lett. 111, 243905 (2013).CrossRefGoogle Scholar
Ablowitz, M.J., Curtis, C.W., Ma, Y.-P., Phys. Rev. A At. Mol. Opt. Phys. 90, 023813 (2014).CrossRefGoogle Scholar
Leykam, D., Chong, Y.D., Phys. Rev. Lett. 117, 143901 (2016).CrossRefGoogle Scholar
Zhou, X., Wang, Y., Leykam, D., Chong, Y.D., New J. Phys. 19, 095002 (2017).CrossRefGoogle Scholar
Kruk, S., Slobozhanyuk, A., Denkova, D., Poddubny, A., Kravchenko, I., Miroshnichenko, A., Neshev, D., Kivshar, Y., Small 13, 1603190 (2017).CrossRefGoogle Scholar
St-Jean, P., Goblot, V., Galopin, E., Lemaître, A., Ozawa, T., Le Gratiet, L., Sagnes, I., Bloch, J., Amo, A., Nat. Photonics 11, 651 (2017).CrossRefGoogle Scholar
Zhao, H., Miao, P., Teimourpour, M.H., Malzard, S., El-Ganainy, R., Schomerus, H., Feng, L., Nat. Commun. 9, 981 (2018).CrossRefGoogle Scholar
Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M.A., Ren, J., Rechtsman, M.C., Segev, M., Christodoulides, D.N., Khajavikhan, M., Phys. Rev. Lett. 120, 113901 (2018).CrossRefGoogle Scholar
Liang, G.Q., Chong, Y.D., Phys. Rev. Lett. 110, 203904 (2013).CrossRefGoogle Scholar
Pasek, M., Chong, Y.D., Phys. Rev. B Condens. Matter 89, 075113 (2014).CrossRefGoogle Scholar
Leykam, D., Mittal, S., Hafezi, M., Chong, Y.D., Phys. Opt. (2018), https://arxiv.org/abs/1802.02253.Google Scholar
Bardyn, C.E., Karzig, T., Refael, G., Liew, T.C.H., Phys. Rev. B Condens. Matter 93, 020502(R) (2016).CrossRefGoogle Scholar
Sigurdsson, H., Li, G., Liew, T.C.H., Phys. Rev. B Condens. Matter 96, 115453 (2017).CrossRefGoogle Scholar
Peano, V., Houde, M., Brendel, C., Marquardt, F., Clerk, A.A., Nat. Commun. 7, 10779 (2016).CrossRefGoogle Scholar
Peano, V., Houde, M., Marquardt, F., Clerk, A.A., Phys. Rev. X 6, 041026 (2016).Google Scholar
Wu, L.-H., Hu, X., Phys. Rev. Lett. 114, 223901 (2015).CrossRefGoogle Scholar
Noh, J., Huang, S., Chen, K.P., Rechtsman, M.C., Phys. Rev. Lett. 120, 063902 (2018).CrossRefGoogle Scholar
Barik, S., Karasahin, A., Flower, C., Cai, T., Miyake, H., DeGottardi, W., Hafezi, M., Waks, E., Science 359, 666 (2018).CrossRefGoogle Scholar
Shalaev, M.I., Walasik, W., Tsukernik, A., Xu, Y., Litchinitser, N.M., Phys. Opt. (2017), https://arxiv.org/abs/1712.07284v2.Google Scholar
Xu, Y., Miroshnichenko, A.E., Phys. Rev. B Condens. Matter 89, 134306 (2014).CrossRefGoogle Scholar
Yu, Y., Chen, Y., Hu, H., Xue, W., Yvind, K., Mork, J., Laser Photon. Rev. 9, 241 (2015).CrossRefGoogle Scholar
Kartashov, Y.V., Skryabin, D.V., Phys. Rev. Lett. 119, 253904 (2017).CrossRefGoogle Scholar
Solnyshkov, D.D., Bleu, O., Malpuech, G., App. Phys. Lett. 112, 031106 (2018).CrossRefGoogle Scholar
Zeuner, J.M., Rechtsman, M.C., Plotnik, Y., Lumer, Y., Nolte, S., Rudner, M.S., Segev, M., Szameit, A., Phys. Rev. Lett. 115, 040402 (2015).CrossRefGoogle Scholar
Kuhl, U., Mortessagne, F., Makri, E., Vitebskiy, I., Kottos, T., Phys. Rev. B Condens. Matter 95, 121409(R) (2017).CrossRefGoogle Scholar
Xiao, L., Zhan, X., Bian, Z.H., Wang, K.K., Zhang, X., Wang, X.P., Li, J., Mochizuki, K., Kim, D., Kawakami, N., Yi, W., Obuse, H., Sanders, B.C., Xue, P., Nat. Phys. 13, 1117 (2017).CrossRefGoogle Scholar