Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T08:46:56.507Z Has data issue: false hasContentIssue false

New states of matter and chemistry at extreme pressures: Low-Z extended solid

Published online by Cambridge University Press:  10 October 2017

Choong-Shik Yoo*
Affiliation:
Department of Chemistry, Institute for Shock Physics, and Materials Science and Engineering, Washington State University, USA; [email protected]
Get access

Abstract

High-pressure research, whether static or dynamic, provides “windows” to novel states, transformations, and properties of highly compressed extended states of light elemental solids that may comprise the internal structures of giant planets and stars. These low-Z extended solids are extremely hard, have high energy density, and exhibit novel electronic and nonlinear optical properties—superior to other known materials at ambient conditions. These materials are often formed at formidably high pressures and are highly metastable at ambient conditions; only a few systems have been recovered at ambient conditions, limiting the materials to the realm of fundamental scientific discovery. An exciting new research area has recently emerged that aims to understand and ultimately allow for control of the stability, bonding, structure, and properties of low-Z extended solids. This article presents an overview of the basic principles that govern and control the pressure-induced chemistry in dense solids. This is aimed at identifying high energy density, low-Z extended solids that are amenable to up-scaled synthesis and stabilization at ambient conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buffett, B., Archer, D., Earth Planet. Sci. Lett. 227, 185 (2004).CrossRefGoogle Scholar
Bundy, F.P., Hall, H.T., Strong, H.M., Wentroff, R.H., Nature 178, 51 (1955).CrossRefGoogle Scholar
Goncharov, A.F., Struzhkin, V.V., Somayazulu, M.S., Hemley, R.J., Mao, H.K., Science 273, 218 (1996).CrossRefGoogle Scholar
Dias, R.P., Silvera, I.F., Science 335, 715 (2017).CrossRefGoogle Scholar
Miao, M.-S., Hoffmann, R., J. Am. Chem. Soc. 13, 3631 (2015).CrossRefGoogle Scholar
Pickard, C.J., Needs, R.J., Nat. Mater. 9, 640 (2010).CrossRefGoogle Scholar
Knudson, M.D., Desjarlais, M.P., Dolan, D.H., Science 322, 1822 (2008).CrossRefGoogle Scholar
Smith, R.F., Eggert, J.H., Duffy, T.S., Braum, D.G., Peterson, J.R., Rudd, R.E., Biener, J., Lazichi, A.E., Hamza, A.V., Wang, J., Braum, T., Benedict, L.X., Celliers, P.M., Collins, G.W., Nature 511, 330 (2014).CrossRefGoogle Scholar
Tomasino, D., Kim, M., Smith, J., Yoo, C.S., Phys. Rev. Lett. 113, 205502 (2014).CrossRefGoogle Scholar
Ryu, Y.J., Kim, M., Lim, J., Dias, R., Klug, D., Yoo, C.-S., J. Phys. Chem. C 120, 27548 (2016).CrossRefGoogle Scholar
Hermann, A., Ashcroft, N.W., Hoffmann, R., Proc. Natl. Acad. Sci. U.S.A. 109, 745 (2011).CrossRefGoogle Scholar
Yoo, C.-S., Sengupta, A., Kim, M., Angew. Chem. Int. Ed. 50, 1 (2011).Google Scholar
Hanfland, M., Syassen, K., Christensen, N.E., Novikov, D.L., Nature 408, 174 (2000).CrossRefGoogle Scholar
Ma, Y., Eremets, M.I., Oganov, A.R., Xie, Y., Trojan, I., Medvedev, S., Lyakhov, A.O., Valle, M., Prakapenka, V., Nature 458, 182 (2009).CrossRefGoogle Scholar
Oganov, A.R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C.W., Liu, Z., Yu, T., Kurakevych, O.O., Solozhenko, V.L., Nature 457, 863 (2009).CrossRefGoogle Scholar
Eremets, M.I., Gavriliuk, A.G., Trojan, I.A., Dzivenko, D.A., Boehler, R., Nat. Mater. 3, 558 (2004).CrossRefGoogle Scholar
Iota, V., Yoo, C.S., Cynn, H., Science 283, 1510 (1999).CrossRefGoogle Scholar
Mailhiot, C., Yang, L.H., McMahan, A.K., Phys. Rev. B Condens. Matter 46, 14419 (1992).CrossRefGoogle Scholar
Lipp, M.J., Klepeis, J.P., Baer, B.J., Cynn, H., Evans, W.J., Iota, V., Yoo, C.-S., Phys. Rev. B Condens. Matter 76, 014113 (2007).CrossRefGoogle Scholar
Cohen, M.L., Phys. Rev. B Condens. Matter 32, 7988 (1985).CrossRefGoogle Scholar
Lipp, M.J., Evans, W.J., Baer, B.J., Yoo, C.S., Nat. Mater. 4, 211 (2005).CrossRefGoogle Scholar
Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I., Nature 525, 73 (2015).CrossRefGoogle Scholar
Dias, R.P., Yoo, C.S., Struzhkin, V.V., Kim, M., Muramatsu, T., Matsuoka, T., Ohishi, Y., Sinogelkin, S., Proc. Natl. Acad. Sci. U.S.A. 110, 11720 (2013).CrossRefGoogle Scholar
Kim, M., Yoo, C.S., J. Chem. Phys. 134, 044519 (2011).CrossRefGoogle Scholar
Raza, Z., Pickard, C.J., Pinilla, C., Saitta, A.M., Phys. Rev. Lett. 111, 235501 (2013).CrossRefGoogle Scholar
Yong, X., Liu, H., Wu, M., Yao, Y., Tse, J.S., Dias, R., Yoo, C.-S., Proc. Natl. Acad. Sci. U.S.A. 113, 11110 (2016).CrossRefGoogle Scholar
Mankelevich, Y.A., May, P.W., Diam. Relat. Mater. 17, 1021 (2008).CrossRefGoogle Scholar
Ryu, Y.-J., Kim, M., Yoo, C.-S., Sci. Rep. 6, 15139 (2015).CrossRefGoogle Scholar
Lim, J., Yoo, C.-S., Appl. Phys. Lett. 109, 051905 (2016).CrossRefGoogle Scholar