Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T01:54:13.406Z Has data issue: false hasContentIssue false

New Directions in Auger Microanalysis

Published online by Cambridge University Press:  29 November 2013

Get access

Abstract

Scanning Auger microscopy is a developing field which has by no means reached its limits either in instrumentation or methodology. Two areas of progress in the microanalysis of materials are the quantification of micro-area spectra and the collection and analysis of Auger images. For microanalysis, some strategies for the quantification of spectra depend on determining the shape of the secondary electron background. Developments in the method of linearized secondary-electron cascades give promise to achieving this. Analyses of materials by multispectral Auger imaging show that it is possible to give a meaningful and quantifiable representation of the inhomogeneities across a surface in the form of color-coded statistically significant images.

Type
Materials Microanalysis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Seah, M.P., Surf. Interface Anal. 9 (1986) p. 8598.CrossRefGoogle Scholar
2.Matthew, J.A.D., Prutton, M., Gomati, M.M. El, and Peacock, D.C., Surf. Interface Anal., submitted.Google Scholar
3.Peacock, D.C., Surf. Sci. 152-153 (1985) p. 895901.CrossRefGoogle Scholar
4.Browning, R., J. Vac. Sci. Technol. A2 (1984) p. 14531456.CrossRefGoogle Scholar
5.Browning, R., Peacock, D.C., and Prutton, M., Appl. Surf. Sci. 22-23 (1985) p. 145159.Google Scholar
6.Browning, R., J. Vac. Sci. Technol. A3 (1985) p. 19591964.CrossRefGoogle Scholar
7.Browning, R., Inst. Phys. Conf. Ser. 78 (1985) p. 231234.Google Scholar
8.Peacock, D.C. and Walker, C.G., Inst. Phys. Conf. Ser. 78 (1985) p. 239242.Google Scholar
9.Gomati, M.M. El, Peacock, D.C., Prutton, M., and Walker, C.G., J. Microscopy (in press).Google Scholar
10.Gomati, M.M. El, Janssen, A.P., Prutton, M., and Venables, J.A., Surf. Sci. 85 (1979) p. 309316.CrossRefGoogle Scholar
11.Dudek, H.J., in Proceedings of the 4th International Conference on Solid Surfaces at the 3rd ECOSS (Cannes, 1980), edited by Degras, D.A. and Costa, M., p. 13651368.Google Scholar
12.Todokoro, H., Sakitani, Y., Fukuhara, S., and Okajima, Y., J. Electron Microsc. 30 (1981) p. 107113.Google Scholar
13.Seah, M.P., SEM 1983 (SEM Inc., AMF, O'Hare, IL, 1983) p. 521536.Google Scholar
14.Minni, E., Appl. Surf. Sci. 15 (1983) p. 270280.CrossRefGoogle Scholar
15.Powell, C.J., J. Vac. Sci. Technol. A4 (1986) p. 15321539.CrossRefGoogle Scholar
16.Hofmann, S., Surf. Interface Anal. 9 (1986) p. 320.CrossRefGoogle Scholar
17.Sekine, T., Hirata, K., and Mogami, A., Surf. Sci. 125 (1983) p. 565577.CrossRefGoogle Scholar
18.Anthony, M.T. and Seah, M.P., J. Elec. Spectrosc. Relat. Phenom. 32 (1983) p. 7386.CrossRefGoogle Scholar
19.Sickafus, E.N., Phys. Rev. B 16 (1977) p. 14361447.CrossRefGoogle Scholar
20.Prutton, M. and Gomati, M.M. El, Surf. Interface Anal. 9 (1986) p. 99103.CrossRefGoogle Scholar
21.Sickafus, E.N., Surf. Sci. 100 (1980) p. 529540.CrossRefGoogle Scholar
22.Browning, R., SEM 1983 (SEM Inc., AMF, O'Hare, IL, 1983) p. 16551663.Google Scholar
23.Ready, P.J. and Wintz, P.A., IEEE Trans. Comm. Com-21 10 (1973) p. 11231130.CrossRefGoogle Scholar
24.Townsend, J.R.G., Int. J. Remote Sensing 5 (1984) p. 681698.CrossRefGoogle Scholar
25.Moik, J.G., Digital Processing of Remotely Sensed Images (NASA SP-431, Washington, DC, 1980) Chapter 8.Google Scholar
26.Browning, R., Smialek, J.L., and Jacobson, N.S., J. Am. Ceram. Soc. (in press).Google Scholar