Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T02:10:43.609Z Has data issue: false hasContentIssue false

Neutron Scattering Studies of Surfaces and Interfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

During the past decade, scientific and technological interest in the properties of surfaces and interfaces has grown at an astounding rate. On first thought, one might not consider a neutron or even an x-ray photon to be a particularly sensitive surface probe given their relatively weak interactions with matter compared to that of a low-energy electron or atom. Indeed, low-energy electron diffraction and atomic beam scattering techniques have contributed significantly to our understanding of surface phenomena. Nonetheless, the very fact that electrons and atoms are so strongly interacting makes quantitative analysis of their scattering data difficult. The interaction of neutrons or x-rays with matter, on the other hand, is weak enough that the potential can be characterized by a relatively simple scattering amplitude. Presently attainable neutron intensities, though not yet comparable to those of x-ray synchrotron sources, are still of sufficient strength to permit a variety of surface or near surface reflectivity and grazing angle diffraction experiments. Because neutrons can distinguish between different isotopes of the same element, most notably hydrogen and deuterium, as well as couple to atomic magnetic moments via a dipolar interaction, they can be indispensable and complementary probes.

More conventional neutron diffraction techniques can also be applied to the study of interfacial phenomena and the effects of reduced dimensionality and compositional modulation in super-lattice structures grown by a variety of thin film deposition methods. In this article we will differentiate between reflectivity and diffraction measurements as follows: if the scattering occurs at a wavevector transfer low enough that the scattering medium appears as a continuum, so that amorphous and crystalline states are indistinguishable, then it will be considered to be in the reflectivity regime whereas diffraction will be taken to correspond to higher wavevector transfer where the precise arrangement of atoms is discernible.

Type
Neutron Scattering
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Passell, L., Satija, S.K., Sutton, M., and Suzanne, J., in Chemistry and Physics of Solid Surfaces VI, edited by Vanselow, R. and Howe, R. (Spinger-Verlag, Berlin, 1986) p. 609.CrossRefGoogle Scholar
2.Bienfait, M., Gay, J.M., and Blank, H., Surf. Science 204 (1988) p. 331.CrossRefGoogle Scholar
3.Sears, V.F., Neutron Optics (Oxford, New York, 1989).Google Scholar
4.Klein, A.G. and Werner, S.A., Rep. Prog. Phys. 46 (1983) p. 259.CrossRefGoogle Scholar
5.Farnoux, B., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 95.Google Scholar
6.Felcher, G.P., Hilleke, R.O., Crawford, R.K., Haumann, J., Kleb, R., and Ostrowski, G., Rev. Sci. Instrum. 58 (1987) p. 609.CrossRefGoogle Scholar
7.Williams, W.G., Polarized Neutrons (Oxford, New York, 1988).Google Scholar
8.Felcher, G.P., Kampwirth, R.T., Gray, K.E., and Felici, R., Phys. Rev. Lett. 52 (1984) p. 1539.CrossRefGoogle Scholar
9.Felcher, G.P., Gray, K.E., Kampwirth, R.T., and Brodsky, M.B., Physica B 136 (1986) p. 59.Google Scholar
10.Bland, J.A.C., Pescia, D., and Willis, R.F., Phys. Rev. Lett. 58 (1987) p. 1244.CrossRefGoogle Scholar
11.Falicov, L.M., Pierce, D.T., Bader, S.D., Gronsky, R., Hathaway, K.B., Hopster, H.J., Lambeth, D.N., Parkin, S.S.P., Prinz, G., Salamon, M., Schuller, I.K., and Victora, R.H., J. Mater. Res. 5 (1990) p. 1299.CrossRefGoogle Scholar
12.Endoh, Y., J. de Phys. 43 (1982) p. C7159.Google Scholar
13.Endoh, Y., Hosoito, N., and Shinjo, T., J. Magn. Magn. Mater. 35 (1983) p. 93.CrossRefGoogle Scholar
14.Majkrzak, C.F., Axe, J.D., and Boni, P., J. Appl. Phys. 57 (1985) p. 3657.CrossRefGoogle Scholar
15.Sinha, S.K., Sirota, E.B., Garoff, S., and Stanley, H.B., Phys. Rev. B 38 (1988) p. 2297.CrossRefGoogle Scholar
16.Schaerpf, O., Physica B 156 & 157 (1989) p. 639.CrossRefGoogle Scholar
17.Mezei, F., in Thin-Film Neutron Optical Devices, edited by Majkrzak, C.F. (SPIE Conf. Proc. 983, Bellingham, WA, USA, 1989) p. 10.Google Scholar
18.Hayter, J.B., Highfield, R.R., Pulman, B.J., Thomas, R.K., McMullen, A.I. and Penfold, J., J. Chem. Soc. Faraday Trans. 97 (1981) p. 1437.CrossRefGoogle Scholar
19.Penfold, J., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 151.Google Scholar
20.Composto, R.J., Stein, R.S., Felcher, G.P., Mansour, A., and Karim, A., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 485.Google Scholar
21.Pomerantz, M., in Molecular Engineering of Ultrathin Polymeric Films, edited by Stroeve, P. and Frances, E. (Elsevier, Barking, England, 1987).Google Scholar
22.Nicklow, R.M., Pomerantz, M., and Segmuller, A.Q., Phys. Rev. B 23 (1981) p. 1081.CrossRefGoogle Scholar
23.Highfield, R.R., Thomas, R.K., Cummins, P.G., Gregory, D.P., Mingins, J., Hayter, J.B., and Schaerpf, O., Thin Solid Films 99 (1983) p. 165.CrossRefGoogle Scholar
24.Stroeve, P., Rabott, J.F., Hilleke, R.O., Felcher, G.P., and Chen, S.H., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166 Pittsburgh, PA, 1990) p. 103.Google Scholar
25.Hasegawa, H. and Hashimoto, T., Macromolecules 18 (1985) p. 589.CrossRefGoogle Scholar
26.Henkee, C.S., Thomas, E.L., and Fetters, L.J., J. Mater. Sci. 23 (1988) p. 1685.CrossRefGoogle Scholar
27.Anastasiadis, S.H., Russell, T.P., Satija, S.K., and Majkrzak, C.F., Phys. Rev. Lett. 62 (1989) p. 1852.CrossRefGoogle Scholar
28.Fredrickson, G.H., Macromolecules 20 (1987) p. 2535.CrossRefGoogle Scholar
29.Anastasiadis, S.H., Russell, T.P., Satija, S.K., and Majkrzak, C.F., J. Chem. Phys. 92 (1990) p. 5677.CrossRefGoogle Scholar
30.Satija, S.K., Majkrzak, C.F., Russell, T.P., and Menelle, A., unpublished results.Google Scholar
31.Kitchens, T.A., Oversluizen, T., Passell, L., and Schermer, R.I., Phys. Rev. Lett. 32 (1974) p. 791.CrossRefGoogle Scholar
32.Majkrzak, C.F., Satija, S., Neumann, D.A., Rush, J.J., Lashmore, D., Johnson, C., Bradshaw, J., Passell, L., and DiNardo, R., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 127.Google Scholar
33.Rekveldt, M.Th., Z. Phys. 259 (1973) p. 391.CrossRefGoogle Scholar
34.Rekveldt, M.Th. and van Schaik, F.J., J. Appl. Phys. 50 (1979) p. 2122.CrossRefGoogle Scholar
35.Kraan, W.H., Rekveldt, M.Th., Hemmes, K., and Lodder, J.C., Physica 136B (1986) p. 440.Google Scholar
36.Bacon, G.E., Neutron Diffraction, 3rd Ed., (Oxford Univ. Press, London, 1975).Google Scholar
37.Majkrzak, C.F., in Metallic Multilayers and Epitaxy, edited by. Hong, M., Wolf, S., and Gubser, D.C. (The Metallurgical Society, Warrendale, PA, 1988) p. 33.Google Scholar
38.Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., and Flynn, C.P., in Metallic Multilayers and Epitaxy, edited by Hong, M., Wolf, S., and Gubser, D.C. (The Metallurgical Society, Warrendale, PA, 1988) p. 11.Google Scholar
39.Majkrzak, C.F., Gibbs, D., Boni, P., Goldman, A.I., Kwo, J., Hong, M., Hsieh, T.C., Fleming, R.M., McWhan, D.B., Yafet, Y., Cable, J.W., Bohr, J., Grimm, H., and Chien, C.L., J. Appl. Phys. 63 (1988) p. 3447.CrossRefGoogle Scholar
40.Majkrzak, C.F., Cable, J.W., Kwo, J., Hong, M., McWhan, D.B., Yafet, Y., Waszczak, J.V., and Vettier, C., Phys. Rev. Lett. 56 (1986) p. 2700.CrossRefGoogle Scholar
41.Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., and Flynn, C.P., Physica B 159 (1989) p. 111.CrossRefGoogle Scholar
42.Erwin, R.W., Rhyne, J.J., Borchers, J., Salamon, M.B., Du, R., and Flynn, C.P., in Neutron Scattering for Materials Science, edited by Shapiro, S.M., Moss, S.C., and Jorgensen, J.D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990) p. 133.Google Scholar
43.Als-Nielsen, J., in Structure and Dynamics of Surfaces II: Phenomena, Models, and Methods, Topics in Current Physics 43, edited by Schonners, W. (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
44.Ankner, J.F., Zabel, H., Neumann, D.A., and Majkrzak, C.F., Phys. Rev. B 40 (1989) p. 792.CrossRefGoogle Scholar
45.Ankner, J.F., Zabel, H., Neumann, D.A., Majkrzak, C.F., Dura, J.A., and Flynn, C.P., J. de Physique 50 (1989) p. C7189.Google Scholar
46.Weller, D., Alvarado, S.F., Gudat, W., Schroder, K., and Campagna, M., Phys. Rev. Left. 54 (1985) p. 1555.CrossRefGoogle Scholar