Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:47:30.238Z Has data issue: false hasContentIssue false

Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials

Published online by Cambridge University Press:  09 February 2018

James A. Bain
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, USA; [email protected]
Jonathan A. Malen
Affiliation:
Department of Mechanical Engineering, Carnegie Mellon University, USA; [email protected]
Minyoung Jeong
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, USA; [email protected]
Turga Ganapathy
Affiliation:
Department of Mechanical Engineering, Carnegie Mellon University, USA; [email protected]
Get access

Abstract

Heat-assisted magnetic recording (HAMR) relies on careful management of heat flow at the nanoscale. This article describes the heat-transfer aspects of such a system that must be considered above and beyond standard Fourier’s Law-based heat conduction. A background on nanoscale heat transport is provided that discusses energy carriers and the role of interfaces and microstructure in nanoscale conduction. These heat-transport concepts are applied to the key components of the HAMR system—the head (principally, the near-field transducer [NFT]) and the magnetic medium. This analysis frames the central challenge of thermal engineering for a HAMR system—getting the medium hot enough while maintaining a NFT that it is cool enough to avoid degradation over time. Of particular note are discussions on the role of the interface thermal conductance in the NFT and the importance of thermal anisotropy in the medium due to its granular microstructure.

Type
Materials for Heat-Assisted Magnetic Recording
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Slack, G.A., Tanzilli, R.A., Pohl, R.O., Vandersande, J.W., J. Phys. Chem. Solids 48, 641 (1987).CrossRefGoogle Scholar
Kazan, M., Volz, S., J. Appl. Phys. 115, 73509 (2014).CrossRefGoogle Scholar
Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G., Thermal Conductivity—Metallic Elements and Alloys, Thermophysical Properties of Matter—The TPRC Data Series (Thermophysical and Electronic Properties Information Analysis Center, Lafayette, IN, 1970), vol. 1.CrossRefGoogle Scholar
Moore, A.L., Shi, L., Mater. Today 17, 163 (2014).CrossRefGoogle Scholar
Kapitza, P.L., J. Phys. (USSR) 4, 181 (1941).Google Scholar
Kapitza, P.L., J. Phys. (USSR) 5, 59 (1941).Google Scholar
Lyeo, H.K., Cahill, D.G., Phys. Rev. B Condens. Matter 73, 144301 (2006).CrossRefGoogle Scholar
Gundrum, B.C., Cahill, D.G., Averback, R.S., Phys. Rev. B Condens. Matter 72, 245426 (2005).CrossRefGoogle Scholar
Stoner, R.J., Maris, H.J., Phys. Rev. B Condens. Matter 48, 16373 (1993).CrossRefGoogle Scholar
Hopkins, P.E., Norris, P.M., Stevens, R.J., Beechem, T.E., Graham, S., J. Heat Transfer 130, 062402 (20008).Google Scholar
Duda, J.C., Yang, C.-Y.P., Foley, B.M., Cheaito, R., Medlin, D.L., Jones, R.E., Hopkin, P.E., Appl. Phys. Lett. 102, 81902 (2013).CrossRefGoogle Scholar
Regner, K.T., Freedman, J.P., Malen, J.A., Nanoscale Microscale Thermophys. Eng. 19, 183 (2015).CrossRefGoogle Scholar
Cahill, D.G., Watson, S.K., Pohl, R.O., Phys. Rev. B Condens. Matter 46, 6131 (1992).CrossRefGoogle Scholar
Larkin, J.M., McGaughey, A.J.H., Phys. Rev. B Condens. Matter 89, 144303 (2014).CrossRefGoogle Scholar
Ashcroft, N.W., Mermin, N.D., Solid State Physics (Holt, Rinehart and Winston, New York, 1976).Google Scholar
Jain, A., McGaughey, A.J.H., Phys. Rev. B Condens. Matter 93, 81206 (2016).CrossRefGoogle Scholar
Wang, W., Cahill, D.G., Phys. Rev. Lett. 109, 175503 (2012).CrossRefGoogle Scholar
Lin, Z., Zhigilei, L.V., Celli, V., Phys. Rev. B Condens. Matter 77, 075133 (2008).Google Scholar
Majumdar, A., Reddy, P., Appl. Phys. Lett. 84, 4768 (2004).CrossRefGoogle Scholar
Monachon, C., Weber, L., Dames, C., Annu. Rev. Mater. Res. 46, 433 (2016).CrossRefGoogle Scholar
Swartz, E.T., Pohl, R.O., Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar
Duda, J.C., Beechem, T.E., Smoyer, J.L., Norris, P.M., Hopkins, P.E., J. Appl. Phys. 108, 73515 (2010).CrossRefGoogle Scholar
Song, B., Fiorino, A., Meyhofer, E., Reddy, P., AIP Adv. 5, 53503 (2015).CrossRefGoogle Scholar
Zhou, N., Xu, X., Hammack, A.T., Stipe, B.C., Gao, K., Scholz, W., Gage, E.C., Nanophotonics 3, 141 (2014).CrossRefGoogle Scholar
Xu, B.X., Cen, Z.H., Goh, J.H., Li, J.M., Toh, Y.T., Zhang, J., Ye, K.D., Quan, C.G., J. Appl. Phys. 111, 07B701 (2012).Google Scholar
Blaber, M.G., Arnold, M.D., Ford, M.J., J. Phys. Condens. Matter 22, 143201 (2010).CrossRefGoogle Scholar
Bhargava, S., Yablonovitch, E., IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
Freedman, J.P., Leach, J.H., Preble, E.A., Sitar, Z., Davis, R.F., Malen, J.A., Sci. Rep. 3, 2963 (2013).CrossRefGoogle Scholar
Jeong, M., Freedman, J.P., Liang, H.J., Chow, C.-M., Sokalski, V.M., Bain, J.A., Malen, J.A., Phys. Rev. Appl. 5, 14009 (2016).CrossRefGoogle Scholar
Duda, J.C., Smoyer, J.L., Norris, P.M., Hopkins, P.E., Appl. Phys. Lett. 95, 31912 (2009).CrossRefGoogle Scholar
Stevens, R.J., Smith, A.N., Norris, P.M., J. Heat Transfer 127, 315 (2005).CrossRefGoogle Scholar
English, T.S., Duda, J.C., Smoyer, J.L., Jordan, D.A., Norris, P.M., Zhigilei, L.V., Phys. Rev. B Condens. Matter 85, 35438 (2012).CrossRefGoogle Scholar
Ji, R., Xu, B., Cen, Z., Ying, J.F., Toh, Y.T., J. Appl. Phys. 117, 17 (2015).CrossRefGoogle Scholar
Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., Erden, M.F., Proc. IEEE 96, 1810 (2008).CrossRefGoogle Scholar
Li, Z., Chen, W., Rea, C., Blaber, M.G., Zhou, N., Zhou, H., Yin, H., IEEE Trans. Magn. 53, 9300104 (2017).Google Scholar
Jubert, P.-O., Zong, F., Grobis, M.K., IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
Feser, J.P., Cahill, D.G., Rev. Sci. Instrum. 83, 104901 (2012).CrossRefGoogle Scholar
Ho, H., Sharma, A.A., Ong, W.-L., Malen, J.A., Bain, J.A., Zhu, J.-G., Appl. Phys. Lett. 103, 131907 (2013).CrossRefGoogle Scholar
Cahill, D.G., Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar