Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T09:10:54.583Z Has data issue: false hasContentIssue false

Nanoporous Metals for Catalytic and Optical Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Polarz, S., Smarsly, B., J. Nanosci. Nanotechnol. 2, 581 (2002).CrossRefGoogle Scholar
2Xia, Y., Adv. Mater. 13, 369 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
3Newman, R.C., Sieradzki, K., MRS Bull. 24, 12 (1999).CrossRefGoogle Scholar
4Raney, M., U.S. Patent 1,628,190 (1927).Google Scholar
5Huber, G.W., Shabaker, J.W., Dumesic, J.A., Science 300, 2075 (2003).CrossRefGoogle Scholar
6Pickering, H.W., Swann, P.R., Corrosion 19, 373 (1963).CrossRefGoogle Scholar
7Swann, P.R., Corrosion 25, 147 (1969).CrossRefGoogle Scholar
8Forty, A.J., Nature 282, 597 (1979).CrossRefGoogle Scholar
9Sieradzki, K., Newman, R.C., U.S. Patent 4,977,038 (1990).Google Scholar
10Oppenheim, I.C., Trevor, D.J., Chidsey, C.E.D., Trevor, P.L., Sieradzki, K., Science 254, 687 (1991).CrossRefGoogle Scholar
11Corcoran, S.G., Sieradzki, K., Wiesler, D., Mater. Res. Soc. Symp. Proc. 451, 93 (1997).CrossRefGoogle Scholar
12Pugh, D.V., Dursun, A., Corcoran, S.G., J. Mater. Res. 18, 216 (2003).CrossRefGoogle Scholar
13Cortie, M.B., Maaroof, A.I., Smith, G.B., Gold Bull. 38, 14 (2005).CrossRefGoogle Scholar
14Yoon, J., Chan, M.H.W., Phys. Rev. Lett. 78, 4801 (1997).CrossRefGoogle Scholar
15Van Der Lingen, E., Cortie, M.B., Glaner, L., South African Patent 2001/5816 (2001).Google Scholar
16Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
17Ding, Y., Erlebacher, J., J. Am. Chem. Soc. 125, 7772 (2003).CrossRefGoogle Scholar
18Ding, Y., Chen, M.W., Erlebacher, J., J. Am. Chem. Soc. 126, 6876 (2004).CrossRefGoogle Scholar
19Ding, Y., Kim, Y.J., Erlebacher, J., Adv. Mater. 16, 1897 (2004).CrossRefGoogle Scholar
20Ding, Y., Mathur, A., Chen, M.W., Erlebacher, J., Angew. Chem. Int. Ed. 44, 4002 (2005).CrossRefGoogle Scholar
21Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., Abraham, F.F., Nano Lett. 6, 2379 (2006).CrossRefGoogle Scholar
22Xu, C., Su, J., Xu, X., Liu, P., Zhao, H., Tian, F., Ding, Y., J. Am. Chem. Soc. 129, 42 (2007).CrossRefGoogle Scholar
23Ge, X., Wang, R., Cui, S., Tian, F., Xu, L., Ding, Y., Electrochem. Commun. 10, 1494 (2008).CrossRefGoogle Scholar
24Smith, G.B., Maaroof, A.I., Gentle, A., Opt. Commun. 271, 263 (2007).CrossRefGoogle Scholar
25Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., Allara, D.L., Langmuir 23, 2414 (2007).CrossRefGoogle Scholar
26Qian, L.H., Yan, X.Q., Fujita, T., Chen, M.W., Appl. Phys. Lett. 90, 153120 (2007).CrossRefGoogle Scholar
27Fujita, T., Okada, H., Koyama, K., Watanabe, K., Maekawa, S., Chen, M.W., Phys. Rev. Lett. 101, 166601 (2008).CrossRefGoogle Scholar
28Shulga, O.V., Jefferson, K., Khan, A.R., D'Souza, V.T., Liu, J., Demchenko, A.V., Stine, K.J., Chem. Mater. 19, 3902 (2007).CrossRefGoogle Scholar
29Hu, K., Lan, D., Li, X., Zhang, S., Anal. Chem. 80, 9124 (2008).CrossRefGoogle Scholar
30Fujita, T., Chen, M.W., Jpn. J. Appl. Phys. 47, 1161 (2008).CrossRefGoogle Scholar
31Parida, S., Kramer, D., Volkert, C.A., Rösner, H., Erlebacher, J., Weissmüller, J., Phys. Rev. Lett. 97, 035504 (2006).CrossRefGoogle Scholar
32Qian, L.H., Chen, M.W., Appl. Phys. Lett. 91, 083105 (2007).CrossRefGoogle Scholar
33Qian, L.H., Inoue, A., Chen, M.W., Appl. Phys. Lett. 92, 093113 (2008).CrossRefGoogle Scholar
34Rösner, H., Parida, S., Kramer, D., Volkert, C.A., Weissmüller, J., Adv. Eng. Mater. 9, 535 (2007).CrossRefGoogle Scholar
35Fujita, T., Qian, L.H., Inoke, K., Erlebacher, J., Chen, M.W., Appl. Phys. Lett. 92, 251902 (2008).CrossRefGoogle Scholar
36Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Chem. Lett. 16, 405 (1987).CrossRefGoogle Scholar
37Haruta, M., Nature 437, 1098 (2005).CrossRefGoogle Scholar
38Lemire, C., Meyer, R., Shaikhutdino, S., Freund, H.J., Angew. Chem. Int. Ed. 43, 118 (2004).CrossRefGoogle Scholar
39Molina, L.M., Hammer, B., Phys. Rev. Lett. 90, 206102 (2003).CrossRefGoogle Scholar
40Iizuka, Y., Kawamoto, A., Akita, K., Date, M., Tsubota, S., Okumura, M., Haruta, M., Catal. Lett. 97, 203 (2004).CrossRefGoogle Scholar
41Sanchez-Castillo, M.A., Couto, C., Kim, W.B., Dumesic, J.A., Angew. Chem. Int. Ed. 43, 1140 (2004).CrossRefGoogle Scholar
42Zielasek, V., Jürgens, B., Schulz, C., Biener, J., Biener, M.M., Hamza, A.V., Bäumer, M., Angew. Chem. Int. Ed. 45, 8241 (2006).CrossRefGoogle Scholar
43Xu, C., Xu, X., Su, J., Ding, Y., J. Catal. 252, 243 (2007).CrossRefGoogle Scholar
44Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J., Delmon, B., J. Catal. 144, 175 (1993).CrossRefGoogle Scholar
45Wittstock, A., Neumann, B., Schaefer, A., Dumbuya, K., Kübel, C., Biener, M.M., Zielasek, V., Steinrück, H.-P., Gottfried, J.M., Biener, J., Hamza, A., Bäumer, M., J. Phys. Chem. C 113, 5593 (2009).CrossRefGoogle Scholar
46Kameoka, S., Tsai, A.P., Catal. Lett. 121, 337 (2008).CrossRefGoogle Scholar
47Zeis, R., Lei, T., Sieradzki, K., Snyder, J., Erlebacher, J., J. Catal. 253, 132 (2008).CrossRefGoogle Scholar
48Falsig, H., Hvolbaek, B., Kristensen, I.S., Jiang, T., Bligaard, T., Christensen, C.H., Norskov, J.K., Angew. Chem. Int. Ed. 47, 4835 (2008).CrossRefGoogle Scholar
49Yin, H., Zhou, C., Xu, C., Liu, P., Xu, X., Ding, Y., J. Phys. Chem. C 112, 9673 (2008).CrossRefGoogle Scholar
50Zhang, J., Liu, P., Ma, H., Ding, Y., J. Phys. Chem. C 111, 10382 (2007).CrossRefGoogle Scholar
51Yu, C., Jia, F., Ai, Z., Zhang, L., Chem. Mater. 19, 6065 (2007).CrossRefGoogle Scholar
52Ge, X., Wang, R., Liu, P., Ding, Y., Chem. Mater. 19, 5827 (2007).CrossRefGoogle Scholar
53Zhang, J., Ma, H., Zhang, D., Liu, P., Tian, F., Ding, Y., Phys. Chem. Chem. Phys. 10, 3250 (2008).CrossRefGoogle Scholar
54Liu, P., Ge, X., Wang, R., Ma, H., Ding, Y., Langmuir 25, 561 (2009).CrossRefGoogle Scholar
55Zeis, R., Mathur, A., Fritz, G., Lee, J., Erlebacher, J., J. Power Sources 165, 65 (2007).CrossRefGoogle Scholar
56Mathur, A., Erlebacher, J., Surf. Sci. 602, 2863 (2008).CrossRefGoogle Scholar
57Yu, F., Ahl, S., Caminade, A.M., Majoral, J.P., Knoll, W., Erlbacher, J., Anal. Chem. 78, 7346 (2006).CrossRefGoogle Scholar
58Qian, L.H., Ding, Y., Fujita, T., Chen, M.W., Langmuir 24, 4426 (2008).CrossRefGoogle Scholar
59Bok, H.M., Shuford, K.L., Kim, S., Kim, S.K., Park, S., Nano Lett. 8, 2265 (2008).CrossRefGoogle Scholar
60Biteen, J.S., Pacifici, D., Lewis, N.B., Atwater, H.A., Nano Lett. 5, 1768 (2005).CrossRefGoogle Scholar
61Kucheyev, S.O., Hayes, J.R., Biener, J., Huser, T., Talley, C.E., Hamza, A.V., Appl. Phys. Lett. 89, 53102 (2006).CrossRefGoogle Scholar
62Chen, L.Y., Yu, J.S., Fujita, T., Chen, M.W., Adv. Funct. Mater. 19, 1221 (2009).CrossRefGoogle Scholar
63Lang, X.Y., Chen, L.Y., Guan, P.F., Fujita, T., Chen, M.W., Appl. Phys. Lett. 94, 213109 (2009).CrossRefGoogle Scholar
64Yu, J., Ding, Y., Xu, C., Inoue, A., Sakurai, T., Chen, M.W., Chem. Mater. 20, 4548 (2008).CrossRefGoogle Scholar
65Snyder, J., Asanithi, P., Dalton, A.B., Erlebacher, J., Adv. Mater. 20, 4483 (2008).CrossRefGoogle Scholar
66Huang, J.F., Sun, I.W., Chem. Mater. 16, 1829 (2004).CrossRefGoogle Scholar