Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T09:15:16.602Z Has data issue: false hasContentIssue false

Nanomaterials for cross-reactive sensor arrays

Published online by Cambridge University Press:  31 January 2011

Ulrike Tisch
Affiliation:
Laboratory for Nanomaterial-Based Devices at the Technion—Israel Institute of Technology, [email protected]
Hossam Haick
Affiliation:
Department of Chemical Engineering, Russell Berrie Nanotechnology Institute of the Technion—Israel Institute of Technology, [email protected]
Get access

Abstract

Arrays of cross-reactive sensors for the detection of multi-component chemical and biological agents have been actively developed during the past two decades. The rapid progress in this field has been driven by the need for fast online detection of a wide range of chemical and biological compounds and mixtures in different branches of industry and in medicine. Nanomaterials are ideal base materials for such sensor arrays because they are chemically versatile, can easily be fabricated, and can be integrated into existing sensing platforms to increase the sensitivity to the target agents. We present a concise though non-exhaustive didactic review of the main concepts and approaches related to the use of nanomaterials in cross-reactive sensor arrays. We focus on electronic transducers incorporating the most important classes of nanomaterials: molecularly modified metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, and semiconducting nanowires. Selected examples of their integration into sensors and sensor arrays are given. We conclude with a brief discussion of the possibilities that the integration of the different types of nanomaterials into sensor arrays offer and the expected limitations.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lavigne, J.J., Anslyn, E.V., Angew. Chem. Int. Ed. 40, 3118 (2001).3.0.CO;2-Y>CrossRefGoogle Scholar
2. Persaud, K., Dodd, G., Nature 299, 352 (1982).CrossRefGoogle Scholar
3. Roeck, F., Barsan, N., Weimar, U., Chem. Rev. 108, 705 (2008).CrossRefGoogle Scholar
4. Wang, D.K.W., Austin, C.C., Anal. Bioanal. Chem. 386, 1089 (2006).CrossRefGoogle Scholar
5. Alivisatos, P., Barbara, P.F., Castleman, A.W., Chang, J., Dixon, D.A., Klein, M.K., McLendon, G.L., Miller, J.S., Ratner, M.A., Rossky, P.J., Stupp, S.I., Thompson, M.E., Adv. Mater. 10, 1297 (1998).3.0.CO;2-7>CrossRefGoogle Scholar
6. Wang, G., Wang, Y., Chen, L., Choo, J., Biosens. Bioelectron. 25, 1859 (2010).CrossRefGoogle Scholar
7. Sadik, O.A., Mwilu, S.K., Aluoch, A., Electrochim. Acta 55, 4287 (2010).CrossRefGoogle Scholar
8. Lang, H.P., Hegner, M., Gerber, C., Mater. Today 8, 30 (2005).CrossRefGoogle Scholar
9. Franke, M.E., Koplin, T.J., Simon, U., Small 2, 36 (2006).CrossRefGoogle Scholar
10. Gouma, P.I., Prasad, A.K., Iyer, K.K., Nanotechnology 17, S48 (2006).CrossRefGoogle Scholar
11. Chen, P.-C., Ishikawa, F.N., Chang, H.-K., Ryu, K., Zhou, C., Nanotechnology 20, 125503 (2009).CrossRefGoogle Scholar
12. Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R., Sensors 10, 2088 (2010).CrossRefGoogle ScholarPubMed
13. Roy, S., Salomonsson, A., Spetz, A.L., Aulin, C., Käll, P.-O., Ojamäe, L., Strand, M., Sanati, M., Mater. Manuf. Processes 21, 275 (2006).CrossRefGoogle Scholar
14. Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., Chem. Rev. 105, 1025 (2005).CrossRefGoogle Scholar
15. Haick, H., J. Phys. D 40, 7173 (2007).CrossRefGoogle Scholar
16. Dovgolevsky, E., Tisch, U., Haick, H., Small 5, 1158 (2009).CrossRefGoogle Scholar
17. Peng, G., Tisch, U., Adams, U., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Haick, H., Nat. Nanotechnol. 4, 669 (2009).CrossRefGoogle Scholar
18. Peng, G., Hakim, M., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Tisch, U., Haick, H., Br. J. Cancer (2010), in press.Google Scholar
19. Cooper, J.S., Raguse, B., Chow, E., Hubble, L., Müller, K.-H., Wieczorek, L., Anal. Chem. 82, 3788 (2010).CrossRefGoogle Scholar
20. Kauffman, D.R., Star, A., Angew. Chem. Int. Ed. 47, 6550 (2008).CrossRefGoogle Scholar
21. Peng, G., Trock, E., Haick, H., Nano Lett. 8, 3631 (2008).CrossRefGoogle Scholar
22. Peng, G., Tisch, U., Haick, H., Nano Lett. 9, 1362 (2009).CrossRefGoogle Scholar
23. Haick, H., Hakim, M., Patrascu, M., Levenberg, C., Shehada, N., Nakhoul, F., Abassi, Z., ACS Nano 3, 1258 (2009).CrossRefGoogle Scholar
24. Zilberman, Y., Tisch, U., Shuster, G., Pisula, W., Feng, X., Müllen, K., Haick, H., Adv. Mat. (2010), DOI: 10.1002/adma.201001275.Google Scholar
25. Penza, M., Rossi, R., Alvisi, M., Serra, E., Nanotechnology 21, 105501 (2010).CrossRefGoogle Scholar
26. Lu, Y., Partridge, C., Meyyappan, M., Li, J., J. Electroanal. Chem. 593, 105 (2006).CrossRefGoogle Scholar
27. Patolsky, F., Timko, B.P., Zheng, G., Lieber, C.M., MRS Bull. 32, 142 (2007).CrossRefGoogle Scholar
28. Cui, Y., Wei, Q., Park, H., Lieber, C.M., Science 293, 1289 (2001).CrossRefGoogle Scholar
29. McAlpine, M.C., Ahmad, H., Wang, D., Heath, J.R., Nat. Mater. 6, 379 (2007).CrossRefGoogle Scholar
30. Assad, O., Haick, H., Proc. IEEE ISIE 2040 (2008).Google Scholar
31. Santra, S., Guha, P.K., Ali, S.Z., Hiralal, P., Unalan, H.E., Covington, J.A., Amaratunga, G.A.J., Milne, W.I., Gardner, J.W., Udrea, F., Sens. Actuators, B 146, 559 (2010).CrossRefGoogle Scholar