Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T16:09:53.954Z Has data issue: false hasContentIssue false

Nanoindentation in materials research: Past, present, and future

Published online by Cambridge University Press:  31 January 2011

Warren C. Oliver
Affiliation:
Nanomechanics, Inc., and FFD, Inc, TN; [email protected]
George M. Pharr
Affiliation:
University of Tennessee, Knoxville; [email protected]
Get access

Abstract

The method we introduced in 1992 for measuring hardness and elastic modulus by nanoindentation testing has been widely adopted and used in the characterization of mechanical behavior at small scales. Since its original development, the method has undergone numerous refinements and changes brought about by improvements to testing equipment and techniques, as well as advances in our understanding of the mechanics of elastic-plastic contact. In this article, we briefly review the history of the method, comment on its capabilities and limitations, and discuss some of the emerging areas in materials research where it has played, or promises to play, an important role.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2.Pethica, J.B., Hutchings, R., Oliver, W.C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
3.Stillwell, N.A., Tabor, D., Proc. Phys. Soc. Londonie, 169 (1961).CrossRefGoogle Scholar
4.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
5.Bulychev, S.I., Alekhin, V.P, Shorshorov, M.Kh., Ternovskii, A.P, Shnyrev, G.D., Zavod. Lab. 41, 1137 (1975).Google Scholar
6.Loubet, J.L., Georges, J. M., Marchesini, O., Meille, G., J. Tribol. 106, 43 (1984).CrossRefGoogle Scholar
7.Doerner, M.F., Nix, W.D., J. Mater Res. 1, 601 (1986).CrossRefGoogle Scholar
8.Pharr, G.M., Brotzen, F.R., Oliver, W.C., J. Mater Res. 7, 613 (1992).CrossRefGoogle Scholar
9.Chakoumakos, B.C., Oliver, W.C., Lumpkin, G.R., Ewing, R.C., Radiat. Eff. Defects Solidslie, 393 (1991).Google Scholar
10.Goldsby, D.L., Rar, A., Pharr, G.M., Tullis, T.E., J. Mater. Res. 19, 357 (2004).CrossRefGoogle Scholar
11.Page, T.F., Oliver, W.C., McHargue, C.J., J. Mater Res. 7, 450 (1992).CrossRefGoogle Scholar
12.Turner, C.H., Rho, J.-Y., Takano, Y., Tsui, TY, Pharr, G.M., J. Biomech. 32, 437 (1999).CrossRefGoogle Scholar
13.Ebenstein, D.M., Coughlin, D., Chapman, J., Li, C., Pruitt, L.A., J. Biomed. Mater Res. 91A, 1028 (2009).CrossRefGoogle Scholar
14.Yao, H., Dao, M., Imholt, T., Huang, J., Wheeler, K., Bonilla, A., Suresh, S., Ortiz, C., PNAS 107, 987 (2010).CrossRefGoogle Scholar
15.Riede, F., Wheeler, J.M., J. Archaeolog. Sci. 36, 2384 (2009).CrossRefGoogle Scholar
16.Gaire, C., Ou, Y., Arao, H., Egami, M., Nakashima, A., Picu, R.C., Wang, G.-C., Lu, T.-M., J. Porous Mater. 17, 11 (2010).CrossRefGoogle Scholar