Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T18:05:31.988Z Has data issue: false hasContentIssue false

Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article focuses on nanocrystalline-matrix ceramic composites specifically designed for applications requiring improved fracture toughness. While the models and theory of toughening mechanisms for microcrystalline composites are well developed, the same cannot be said for their nanocrystalline counterparts. The difficulty in producing fully consolidated ceramic composites that retain a nanocrystalline structure is the main hurdle to thorough investigations in this area. Thus, much of the research on so-called nanocomposites has been on materials with microcrystalline matrices and nanometric second phases. In this article, we present the general principles of toughness mechanisms in microcrystalline ceramic composites, and then extend these ideas to consider how they should apply to ceramics with nanocrystalline matrices. While work in this area is still quite limited, we review current research focused on the production and testing of composites with nanocrystalline matrices and second phases, and we recap the results of some promising fracture toughness reports.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mayo, M.J., Hague, D.C., and Chen, D.J., Mater. Sci. Eng., A 166 (1993) p. 145.Google Scholar
2Fang, Y., Agrawal, D.K., Roy, D.M., and Roy, R., Mater. Lett. 23 (1995) p. 147.Google Scholar
3Lu, J., Ueda, K.-I., Yagi, H., Yanagitani, T., Akiyama, Y., and Kaminskii, A.A., J. Alloys Compd. 341 (2002) p. 220.CrossRefGoogle Scholar
4Sternitzke, M., J. Eur. Ceram. Soc. 17 (1997) p. 1061.Google Scholar
5Awaji, H., Choi, S.-M., and Yagi, E., Mech. Mater. 34 (2002) p. 411.CrossRefGoogle Scholar
6Tuan, W.H., Lin, M.C., and Wu, H.H., Ceram. Int. 21 (1995) p. 221.CrossRefGoogle Scholar
7Vekinis, G., Sofianopoulos, E., and Tomlinson, W.J., Acta Mater. 45 (1997) p. 4651.CrossRefGoogle Scholar
8Rodeghiero, E.D., Tse, O.K., Chisaki, J., and Giannelis, E.P., Mater. Sci. Eng., A 195 (1995) p. 151.Google Scholar
9Dutta, A.K., Narasaiah, N., Chattopadhyaya, A.B., and Ray, K.K., Ceram. Int. 27 (2001) p. 407.CrossRefGoogle Scholar
10Kelly, P.M. and Rose, L.R. Francis, Prog. Mater. Sci. 47 (2002) p. 463.Google Scholar
11Bhaduri, S. and Bhaduri, S.B., Nanostruct. Mater. 8 (1997) p. 755.CrossRefGoogle Scholar
12Evans, A.G., J. Am. Ceram. Soc. 73 (1990) p. 187.Google Scholar
13Reimanis, I.E., Mater. Sci. Eng. A 237 (1997) p. 159.Google Scholar
14Ruhle, M., Evans, A.G., McMeeking, R.M., Charalambides, P.G., and Hutchinson, J.W., Acta Metall. 35 (1987) p. 2701.CrossRefGoogle Scholar
15Gu, W.-H., Faber, K.T., and Steinbrech, R.W., Acta Metall. Mater. 40 (1992) p. 3121.Google Scholar
16Niihara, K., Nakahira, A., and Sekino, T., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J.C., and Thomas, G.J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993) p. 405.Google Scholar
17Zhan, G.-D., Kuntz, J., Wan, J., Garay, J., and Mukherjee, A.K., Mater. Sci. Eng. A 356 (2003) p. 443.CrossRefGoogle Scholar
18Zhan, G.D., Kuntz, J.D., Wan, J., Garay, J.E., and Mukherjee, A.K., J. Am. Ceram. Soc. 86 (2003) p. 200.CrossRefGoogle Scholar
19Zhan, G.D., Kuntz, J.D., Wan, J., and Mukherjee, A.K., Nat. Mater. 2 (2003) p. 38.CrossRefGoogle Scholar
20Kuntz, J.D., Wan, J., Zhan, G.D., and Mukherjee, A.K., in Proc. TMS Annu. Meet. on Ultrafine Grained Materials II, edited by Zhu, Y.T., Langdon, T.G., Mishra, R.S., Semiatin, S.L., Sharan, M.J., and Lowe, T.C. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 225.Google Scholar
21Niihara, K., Nakahira, A., Sasaki, G., and Hirabayashi, M., in Proc. MRS Int. Meet. Adv. Mater., Vol. 4, edited by Doyama, M., Somiya, S., and Chang, R.P.H. (Materials Research Society, Pittsburgh, PA, 1989) p. 129.Google Scholar
22Niihara, K. and Nakahira, A., in Proc. Satellite Symp. 2, Adv. Structural Inorganic Composites, 7th Int. Meet. on Modern Ceramics Technologies, edited by Vincenzini, P. (Elsevier, Amsterdam, 1991) p. 637.Google Scholar
23Levin, I., Kaplan, W.D., Brandon, D.G., and Layyous, A.A., J. Am. Ceram. Soc. 78 (1995) p. 254.CrossRefGoogle Scholar
24Ohji, T., Young-Keun, J., Yong-Ho, C., and Niihara, K., J. Am. Ceram. Soc. 81 (1998) p. 1453.CrossRefGoogle Scholar
25Tan, H. and Yang, W., Mech. Mater. 30 (1998) p. 111.CrossRefGoogle Scholar
26Ji, Y. and Yeomans, J.A., J. Eur. Ceram. Soc. 22 (2002) p. 1927.Google Scholar
27Oh, S.T., Sekino, T., and Niihara, K., J. Eur. Ceram. Soc. 18 (1998) p. 31.CrossRefGoogle Scholar
28Sekino, T., Nakajima, T., Ueda, S., and Niihara, K., J. Am. Ceram. Soc. 80 (1997) p. 1139.Google Scholar
29Sekino, T. and Niihara, K., Nanostruct. Mater. 6 (1995) p. 663.Google Scholar
30Mishra, R.S., Lesher, C.E., and Mukherjee, A.K., in Materials Science Forum, Vols. 225–227, Part 1 (Trans Tech, Zurich, Switzerland, 1996) p. 617.Google Scholar
31Mishra, R.S., Lesher, C.E., and Mukherjee, A.K., J. Am. Ceram. Soc. 79 (1996) p. 2989.Google Scholar
32Liao, S.-C., Chen, Y.-J., Kear, B.H., and Mayo, W.E., Nanostruct. Mater. 10 (6) (1998) p. 1063.CrossRefGoogle Scholar
33Wan, J., Gasch, M.J., Kuntz, J.D., Mishra, R., and Mukherjee, A.K., in Structure and Mechanical Properties of Nanophase Materials: Theory and Computer Simulation vs. Experiment, edited by Farkas, D., Kung, H., Mayo, M., Swygenhoven, H. Van, and Weertman, J. (Mater. Res. Soc. Symp. Proc. 634, Warrendale, PA, 2001) p. B7.2.1.Google Scholar
34Wan, J., Gasch, M.J., and Mukherjee, A.K., J. Mater. Res. 15 (2000) p. 1657.Google Scholar
35Zhan, G.D., Kuntz, J.D., Wan, J., Garay, J.E., and Mukherjee, A.K., in Ultrafine Grained Materials II: Proc. TMS Annu. Meet., edited by Zhu, Y.T., Langdon, T.G., Mishra, R.S., Semiatin, S.L., Sharan, M.J., and Lowe, T.C. (The Minerals Metals & Materials Society, Warrendale, PA, 2002) p. 219.Google Scholar
36Zhan, G.D., Kuntz, J.D., Wan, J., Garay, J.E., and Mukherjee, A.K., Scripta Mater. 47 (2002) p. 737.CrossRefGoogle Scholar
37Omori, M., Mater. Sci. Eng., A 287 (2000) p. 183.CrossRefGoogle Scholar
38Hahn, H., Nanostruct. Mater. 2 (1993) p. 251.CrossRefGoogle Scholar
39Pechenik, A., Piermarini, G.J., and Danforth, S.C., J. Am. Ceram. Soc. 75 (1992) p. 3283.CrossRefGoogle Scholar
40Pechenik, A., Piermarini, G.J., and Danforth, S.C., Nanostruct. Mater. 2 (1993) p. 479.CrossRefGoogle Scholar
41Gallas, M.R., Hockey, B., Pechenik, A., and Piermarini, G.J., J. Am. Ceram. Soc. 77 (1994) p. 2107.CrossRefGoogle Scholar
42Garcia, D.E., Schicker, S., Bruhn, J., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 81 (1998) p. 429.CrossRefGoogle Scholar
43Virkar, A.N. and Matsumoto, R.L.K., J. Am. Ceram. Soc. 69 (1986) p. C224.CrossRefGoogle Scholar
44Siegel, R.W., Chang, S.K., Ash, B.J., Stone, J., Ajayan, P.M., Doremus, R.W., and Schadler, L.S., Scripta Mater. 44 (2001) p. 2061.Google Scholar
45Flahaut, E., Peigney, A., Laurent, C., Marliere, C., Chastel, F., and Rousset, A., Acta Mater. 48 (2000) p. 3803.CrossRefGoogle Scholar
46S. Maensiri and Roberts, S.G., J. Eur. Ceram. Soc. 22 (2002) p. 2945.Google Scholar
47Anya, C.C., J. Mater. Sci. 34 (1999) p. 5557.CrossRefGoogle Scholar
48Davidge, R.W., Brook, R.J., Cambier, F., Poorteman, M., Leriche, A., O'Sullivan, D., Hampshire, S., and Kennedy, T., Br. Ceram. Trans. 96 (1997) p. 121.Google Scholar
49Zhu, W.Z., Gag, J.H., and Ding, Z.S., J. Mater. Sci. 32 (1997) p. 537.CrossRefGoogle Scholar