Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T18:10:01.187Z Has data issue: false hasContentIssue false

Nanocomposite Hard Coatings for Wear Protection

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanocomposite thin films successfully promote hardness, oxidation resistance, improved wear behavior, and other properties relevant for wear-reducing coatings. Such coatings are composed of nanocrystalline grains of transition-metal nitrides or carbides surrounded by an amorphous hard matrix. The properties of nanocomposite coatings, especially hardness, are directly linked to nanostructure. The codeposition of the amorphous and nanocrystalline phases of different compositions results in different morphologies, which in turn affect the coating's properties. A maximum hardness ranging from 30 GPa to reported values above 60 GPa has been observed for most nanocomposite coatings. To obtain enhanced hardness, the domain size of the nanocrystalline phase must be below 10 nm, while the thickness of the amorphous layer separating the nanocrystals must be maintained at only a few atomic bond lengths. The prime reason for the hardness enhancement is the absence of dislocation activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Teter, D.M., MRS Bull. 23 (1) (1998) p. 22.CrossRefGoogle Scholar
2.Holleck, H., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2661.CrossRefGoogle Scholar
3.Knotek, O., Böhmer, M., and Leyendecker, T., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2695.CrossRefGoogle Scholar
4.Münz, W.-D., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2717.CrossRefGoogle Scholar
5.McIntyre, D., Greene, J.E., Håkansson, G., Sundgren, J.-E., and Münz, W.-D., J. Appl. Phys. 67 (3) (1990) p. 1542.CrossRefGoogle Scholar
6.Valvoda, V., Surf. Coat. Technol. 80 (1996) p. 61.Google Scholar
7.Robertson, J., Mater. Sci. Eng., R 37 (2002) p. 129.CrossRefGoogle Scholar
8.Koehler, J.S., Phys. Rev. B 2 (2) (1970) p. 547.CrossRefGoogle Scholar
9.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7 (4) (1992) p. 901.CrossRefGoogle Scholar
10.Barnett, S. and Madan, A., Phys. World (January 1998) p. 45.CrossRefGoogle Scholar
11.Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., and Nomura, T., Surf. Coat. Technol. 86–87 (1996) p. 225.Google Scholar
12.Holleck, H. and Schier, V., Surf. Coat Technol. 76 (1–3) (1995) p. 328.CrossRefGoogle Scholar
13.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (9) (1995) p. 4403.Google Scholar
14.Sproul, W.D., Science 273 (1996) p. 889.CrossRefGoogle Scholar
15.Hirai, T. and Hayashi, S., J. Mater. Sci. 17 (1982) p. 1320.Google Scholar
16.Li, S., Shi, Y., and Peng, H., Plasma Chem. Plasma Process. 21 (3) (1992) p. 287.Google Scholar
17.Veprřek, S., Reiprich, S., and Shizhi, L., Appl. Phys. Lett. 66 (20) (1995) p. 2640.Google Scholar
18.Nesladek, P. and Veprřek, S., Phys. Status Solidi A 177 (2000) p. 53.3.0.CO;2-H>CrossRefGoogle Scholar
19.Veprřek, S., Haussmann, M., and Reiprich, S., J. Vac. Sci. Technol., A 14 (1996) p. 46.CrossRefGoogle Scholar
20.Diserens, M., Patscheider, J., and Lévy, F., Surf. Coat. Technol. 108–109 (1998) p. 241.Google Scholar
21.Vaz, F., Rebouta, L., Ramos, S., Cavaleiro, A., da Silva, M.F., and Soares, J.C., Surf. Coat. Technol. 100–101 (1–3) (1998) p. 110.Google Scholar
22.He, J.L., Chen, C.K., and Hon, M.H., Mater. Chem. Phys. 44 (1996) p.9.CrossRefGoogle Scholar
23.Vaz, F., Rebouta, L., Goudeau, P., Girardeau, T., Pacaud, J., Riviere, J.-P., and Traverse, A., Surf. Coat. Technol. 146–147 (2001) p. 274.Google Scholar
24.Sambasivan, S. and Petuskey, W.T., J. Mater. Res. 9 (9) (1994) p. 2362.CrossRefGoogle Scholar
25.Münz, W.-D., Hauzer, F.J.M., Schulze, D., and Buil, B., Surf. Coat. Technol. 49 (1991) p. 161.CrossRefGoogle Scholar
26.Patscheider, J., Zehnder, T., and Diserens, M., Surf. Coat. Technol. 146–147 (2001) p. 201.Google Scholar
27.Diserens, M., Patscheider, J., and Lévy, F., Surf. Coat. Technol. 120–121 (1999) p. 158.CrossRefGoogle Scholar
28.Sun, X., Reid, J.S., Kolawa, E., and Nicolet, M.-A., J. Appl. Phys. 81 (2) (1997) p. 656.CrossRefGoogle Scholar
29.Chen, Y.-H., Lee, K.W., Chiou, W.-A., Chung, Y.-W., and Keer, L.M., Surf. Coat. Technol. 146–147 (2001) p. 209.Google Scholar
30.Diserens, M., dissertation no. 21290, EPFL, Lausanne, 2000.Google Scholar
31.Zehnder, T. and Patscheider, J., Surf. Coat. Technol. 133–134 (2000) p. 138.CrossRefGoogle Scholar
32.Voevodin, A.A. and Zabinski, J.S., J. Mater. Sci. 33 (1998) p. 319.Google Scholar
33.Leonhardt, A., Liepack, H., and Bartsch, K., Surf. Coat. Technol. 133–134 (2000) p. 186.CrossRefGoogle Scholar
34.Voevodin, A.A., Rebholz, C., Schneider, J.M., Stevenson, P., and Matthews, A., Surf. Coat. Technol. 73 (1995) p. 185.CrossRefGoogle Scholar
35.Voevodin, A.A., Capano, M.A., Safriet, A.J., Donley, M.S., and Zabinski, J.S., Appl. Phys. Lett. 69 (1996) p. 188.CrossRefGoogle Scholar
36.Musil, J., Surf. Coat. Technol. 125 (2000) p. 322.CrossRefGoogle Scholar
37.Musil, J., Zeman, P., Hruby, H., and Mayrhofer, P., Surf. Coat. Technol. 121 (1999) p. 179.CrossRefGoogle Scholar
38.Musil, J., Karvankova, P., and Kasl, J., Surf. Coat. Technol. 139 (2001) p. 101.CrossRefGoogle Scholar
39.Karvankova, P., Männling, H.-D., Eggs, C., and Veprřek, S., Surf. Coat. Technol. 146–147 (2001) p. 280.CrossRefGoogle Scholar
40.Bartsch, K., Leonhardt, A., Langer, U., and Künanz, K., Surf. Coat. Technol. 94–95 (1–3) (1997) p. 168.Google Scholar
41.Martin, P.J. and Bendavid, A., Thin Solid Films 394 (2001) p. 1.CrossRefGoogle Scholar
42.Martin, P.J. and Bendavid, A., Surf. Coat. Technol. 163–164 (2002) p. 245.Google Scholar