Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-21T21:33:35.596Z Has data issue: false hasContentIssue false

Molecular-Beam Epitaxy and Device Applications of III-V Semiconductor Nanowires

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A scaling-down of feature sizes into the nanometer range is a common trend in silicon and compound semiconductor advanced devices. That this trend will continue is clearly evidenced by the fact that the “roadmap” for the Si ultralarge-scale-integration circuit (USLI) industry targets production-level realization of a 70-nm minimum feature size for the year 2010. GaAs- and InP-based heterostructure devices such as high-electron-mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have made remarkable progress by miniaturization, realizing ultrahigh speeds approaching the THz range with ultralow power consumption. Due to progress in nanofabrication technology, feature sizes of scaled-down transistors are rapidly approaching the Fermi wavelength of electrons in semiconductors, even at the production level. This fact may raise some concerns about the operation of present-day devices based on semiclassical principles.

However, the progress of nanofabrication technology has opened up the exciting possibility of constructing novel quantum devices, based directly on quantum mechanics, by utilizing artificial structures such as quantum wells, wires, and dots. In these structures, new physical effects appear, such as the formation of new quantum states in single and coupled quantum structures, artificial miniband formation in superlattices, tunneling and resonant tunneling in single and multiple barriers, propagation of phase-coherent guided electron waves in quantum wires, conductance oscillations in small tunnel junctions due to single-electron tunneling, and so on. We expect that these effects will offer rich functionality in next-generation semiconductor quantum ULSIs based on artificial quantum structures, with feature sizes in the range of one to a few tens of nanometers. Beyond this, molecular-level ULSIs using exotic materials and various chemical and electrochemical processes other than the standard semiconductor ones may appear, butat present, they still seem to be too far in the future for realistic consideration for industrial applications.

Type
Novel Methods of Nanoscale Wire Formation
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T., Phys. Rev. Lett. 60 (1988) p. 848.CrossRefGoogle Scholar
2.Madhukar, A., Rajkumar, K.C., and Chen, P., Appl. Phys. Lett. 62 (1993) p. 1547.CrossRefGoogle Scholar
3.Kapon, E., Hwang, D.M., and Bhat, R., Phys. Rev. Lett. 63 (1989) p. 430.CrossRefGoogle Scholar
4.Fukui, T., Ando, S, and Fukai, Y., Appl. Phys. Lett. 57 (1990) p. 1029.CrossRefGoogle Scholar
5.Matsumoto, K., Ishii, M., Segawa, K., Oka, Y., Vartanian, J.B., and Harris, J.S., Appl. Phys. Lett. 68 (1996) p. 34.CrossRefGoogle Scholar
6.Kawabe, M., J. Cryst. Growth 150 (1995) p. 370.CrossRefGoogle Scholar
7.Hashizume, T., Okada, H., Jinushi, K., and Hasegawa, H., Jpn. J. Appl. Phys. 34 (1995) p. L635.CrossRefGoogle Scholar
8.Hasegawa, H., Hashizume, T., Okada, H., and Jinushi, K., J. Vac. Sci. Technol., B 13 (1995) p. 1744.CrossRefGoogle Scholar
9.Hashizume, T., Okada, H., and Hasegawa, H., Physica B 227 (1996) p. 42.CrossRefGoogle Scholar
10.Okada, H., Kasai, S., Fujikura, H., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 36 (1997) p. 4156.CrossRefGoogle Scholar
11.Nakamura, J., Kudoh, T., Okada, H., and Hasegawa, H., in Inst. Phys. Conf. Ser. (Institute of Physics, New York) in press.Google Scholar
12.Fujikura, H. and Hasegawa, H., J. Electron. Mater. 25 (1996) p. 619.CrossRefGoogle Scholar
13.Kihara, M., Fujikura, H., and Hasegawa, H., Appl. Surf. Sci. 117/118 (1997) p. 695.CrossRefGoogle Scholar
14.Fujikura, H., Hanada, Y., Kihara, M., and Hasegawa, H., Jpn. J. Appl. Phys. 37 (1998) p. 1532.CrossRefGoogle Scholar
15.Muranaka, T., Okada, H., Fujikura, H., and Hasegawa, H., Jpn. J. Appl. Phys. 38 (1999) p. 1071.CrossRefGoogle Scholar
16.Ono, N., Fujikura, H., and Hasegawa, H., in Inst. Phys. Conf. Ser. (Institute of Physics, New York) in press.Google Scholar
17.Petrosyan, G.A. and Shik, A.Y., Sov. Phys. Semicond. 23 (1989) p. 696.Google Scholar
18.Tarucha, S., Honda, T., and Saku, T., Solid State Commun. 94 (1995) p. 413.CrossRefGoogle Scholar
19.Ogata, M. and Fukuyama, H., Phys. Rev. Lett. 73 (1994) p. 468.CrossRefGoogle Scholar
20.Fukuyama, H., Kohno, H., and Shirasaki, R., J. Phys. Soc. Jpn. 62 (1993) p. 1109.CrossRefGoogle Scholar
21.Shitara, T., Tornow, M., Kurtenbach, A., Weiss, D.W., Eberl, K., and von Klitzing, K., Appl. Phys. Lett. 66 (1995) p. 2385.CrossRefGoogle Scholar
22.Nakamura, Y., Tsuchiya, M., Koshiba, S., Noge, H., and Sakaki, H., Appl. Phys. Lett. 64 (1994) p. 2552.CrossRefGoogle Scholar
23.Hanada, Y., Ono, N., Fujikura, H., and Hasegawa, H., Solid-State Electron. 42 (1998) p. 1413.CrossRefGoogle Scholar
24.Fujikura, H., Muranaka, T., and Hasegawa, H., Microelectron. J. 30 (1999) p. 397.CrossRefGoogle Scholar
25.Jinushi, K., Okada, H., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 35 (1996) p. 1132.CrossRefGoogle Scholar
26.Kasai, S., Jinushi, K., Tomozawa, H., and Hasegawa, H., Jpn. J. Appl. Phys. 36 (1997) p. 1678.CrossRefGoogle Scholar
27.Satoh, Y., Okada, H., Jinushi, K., Fujikura, H., and Hasegawa, H., Jpn. J. Appl. Phys. 38 (1999) p. 410.CrossRefGoogle Scholar
28.Okada, H., Fujikura, H., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 36 (1997) p. 1672.CrossRefGoogle Scholar
29.Okada, H., Fujikura, H., Hashizume, T., and Hasegawa, H., Solid-State Electron. 42 (1998) p. 1419.CrossRefGoogle Scholar
30.Zimmerli, G., Kautz, R.L., and Martinis, J.M., Appl. Phys. Lett. 61 (1992) p. 2616.CrossRefGoogle Scholar
31.Smith, R.A. and Ahmed, H., Appl. Phys. Lett. 71 (1997) p. 3838.CrossRefGoogle Scholar