Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-20T17:45:42.476Z Has data issue: false hasContentIssue false

Microstructural design for advanced light metals

Published online by Cambridge University Press:  09 April 2019

Jian-Feng Nie
Affiliation:
Department of Materials Science and Engineering, Monash University, Australia; [email protected]
Yunzhi Wang
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, USA; [email protected]
Get access

Abstract

We highlight the current understanding of mechanisms of phase transformation, strengthening, and the role of alloying elements in aluminum, magnesium, and titanium alloys, including nucleation and growth of precipitates, precipitate–dislocation interactions, solute segregation at precipitate–matrix interfaces and planar defects, and the development of strengthening models that account for the real particle shape. Future directions such as atomic-scale elemental mapping and computation, and the influence of particle shape on mechanical properties are discussed. With the combination of advanced characterization and computational tools, it is anticipated that much less time will be needed to develop the next generation of light alloys.

Type
Computational Design And Development Of Alloys
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, H.I., Enomoto, M., Lee, J.K., Mechanisms of Diffusional Phase Transformations in Metals and Alloys (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2010).CrossRefGoogle Scholar
Bourgeois, L., Dwyer, C., Weyland, M., Nie, J.F., Muddle, B.C., Acta Mater . 59, 7043 (2011).CrossRefGoogle Scholar
Hono, K., Sano, N., Babu, S.S., Okano, R., Sakurai, T., Acta Metall. Mater. 41, 829 (1993).10.1016/0956-7151(93)90016-LCrossRefGoogle Scholar
Reich, L., Murayama, M., Hono, K., Acta Mater . 46, 6053 (1998).10.1016/S1359-6454(98)00280-8CrossRefGoogle Scholar
Kang, S.J., Kim, Y.W., Kim, M., Zuo, J.M., Acta Mater . 81, 501 (2014).CrossRefGoogle Scholar
Murayama, M., Hono, K., Scripta Mater . 44, 701 (2001).CrossRefGoogle Scholar
Araullo-Peters, V., Gault, B., de Geuser, F., Deschamps, A., Cairney, J.M., Acta Mater . 66, 199 (2014).CrossRefGoogle Scholar
Kang, S.J., Kim, T.H., Yang, C.W., Lee, J.I., Park, E.S., Noh, T.W., Kim, M., Scripta Mater . 109, 68 (2015).CrossRefGoogle Scholar
Gumbmann, E., Lefebvre, W., de Geuser, F., Sigli, C., Deschamps, A., Acta Mater . 115, 104 (2016).CrossRefGoogle Scholar
Liu, H., Gao, Y., Qi, L., Wang, Y., Nie, J.F., Metall. Mater. Trans. 46A, 3287 (2015).10.1007/s11661-015-2895-3CrossRefGoogle Scholar
Hornbogen, E., Starke, E.A., Acta Metall. Mater. 41, 1 (1993).CrossRefGoogle Scholar
Nie, J.F., Muddle, B.C., J. Phase Equilib. 19, 543 (1998).CrossRefGoogle Scholar
Nie, J.F., Muddle, B.C., Mater. Sci. Eng. A 319, 448 (2001).CrossRefGoogle Scholar
Nie, J.F., Muddle, B.C., Acta Mater . 56, 3490 (2008).CrossRefGoogle Scholar
Nie, J.F., Wilson, N., Zhu, Y.M., Xu, Z., Acta Mater . 106, 260 (2016).CrossRefGoogle Scholar
Nie, J.F., in Physical Metallurgy, 5th ed., Laughlin, D.E., Hono, K., Eds. (Elsevier, Amsterdam, The Netherlands, 2014), p. 2009.CrossRefGoogle Scholar
Christian, J.W., Prog. Mater. Sci. 42, 101 (1997).10.1016/S0079-6425(97)00009-1CrossRefGoogle Scholar
Sasaki, T.T., Oh-ishi, K., Ohkubo, T., Hono, K., Scripta Mater . 55, 251 (2006).10.1016/j.scriptamat.2006.04.005CrossRefGoogle Scholar
Mendis, C.L., Bettles, C.J., Gibson, M.A., Hutchinson, C., Mater. Sci. Eng. A 435, 163 (2006).10.1016/j.msea.2006.07.090CrossRefGoogle Scholar
Liu, C.Q., Chen, H.W., Nie, J.F., Scripta Mater . 123, 5 (2016).CrossRefGoogle Scholar
Wang, J., Hirth, J.P., Tome, C.N., Acta Mater . 57, 5521 (2009).CrossRefGoogle Scholar
Liao, X.Z., Wang, J., Nie, J.F., Jiang, Y.Y., Wu, P.D., MRS Bull . 41, 314 (2016).CrossRefGoogle Scholar
Kumar, M.A., Beyerlein, I.J., Tome, C.N., Acta Mater . 116, 143 (2016).10.1016/j.actamat.2016.06.042CrossRefGoogle Scholar
Liu, H., Lin, F.X., Zhao, P.Y., Moelans, N., Wang, Y., Nie, J.F., Acta Mater . 153, 86 (2018).CrossRefGoogle Scholar
Zhu, Y.M., Xu, S.W., Nie, J.F., Acta Mater . 143, 1 (2018).CrossRefGoogle Scholar
Zhu, Y.M., Bian, M.Z., Nie, J.F., Acta Mater . 127, 505 (2017).CrossRefGoogle Scholar
Hadorn, J.P., Hantzsche, K., Yi, S.B., Bohlen, J., Letzig, D., Wollmershauser, J.A., Agnew, S.R., Metall. Mater. Trans. 43A, 1347 (2012).CrossRefGoogle Scholar
Bugnet, M., Kula, A., Niewczas, M., Botton, G.A., Acta Mater . 79, 66 (2014).CrossRefGoogle Scholar
Hadorn, J.P., Sasaki, T.T., Nakata, T., Ohkubo, T., Kamado, S., Hono, K., Scripta Mater . 93, 28 (2014).CrossRefGoogle Scholar
Robson, J.D., Metall. Mater. Trans. 45A, 3205 (2014).CrossRefGoogle Scholar
Zeng, Z.R., Zhu, Y.M., Xu, S.W., Bian, M.Z., Davies, C.H.J., Birbilis, N., Nie, J.F., Acta Mater . 105, 479 (2016).CrossRefGoogle Scholar
Lutjering, G., Wiliams, J.C., Titanium, 2nd ed. (Springer, Berlin, 2007).Google Scholar
Totten, G.E., MacKenzie, D.S., ASM Handbook, Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, Materials Park, OH, 2016).CrossRefGoogle Scholar
Burgers, W.G., Physica 1, 561 (1934).CrossRefGoogle Scholar
Gao, Y., Shi, R., Nie, J.F., Dregia, S.A., Wang, Y., Acta Mater . 109, 353 (2016).CrossRefGoogle Scholar
Qiu, D., Shi, R., Zhang, D., Lu, W., Wang, Y., Acta Mater. 88, 218 (2015).CrossRefGoogle Scholar
Lutjering, G., Mater. Sci. Eng. A 243, 32 (1998).CrossRefGoogle Scholar
Banerjee, S., Mukhopadhyay, P., Phase Transformations: Examples from Titanium and Zirconium Alloys (Elsevier Science, Oxford, 2007).Google Scholar
Boyne, A., Wang, D., Shi, R.P., Zheng, Y., Behera, A., Nag, S., Tiley, J.S., Fraser, H.L., Banerjee, R., Wang, Y., Acta Mater. 64, 188 (2014).CrossRefGoogle Scholar
Heo, T.W., Shin, D.S., Chen, L.Q., Metall. Mater. Trans. 45A, 3438 (2014).CrossRefGoogle Scholar
Semiatin, S.L., Kinsel, K.T., Pilchak, A.L., Sargent, G.A., Metall. Mater. Trans. 44A, 3852 (2013).CrossRefGoogle Scholar
Qiu, D., Shi, R., Zhao, P., Zhang, D., Lv, W., Wang, Y., Acta Mater . 112, 347 (2016).CrossRefGoogle Scholar
Shi, R., Dixit, V., Fraser, H.L., Wang, Y., Acta Mater . 102, 197 (2016).CrossRefGoogle Scholar
Shi, R.P., Zhou, N., Niezgoda, S., Wang, Y., Acta Mater . 94, 224 (2015).CrossRefGoogle Scholar
Shi, R.P., Wang, D., Wang, Y., in ASM Handbook, Volume 4E: Heat Treating of Nonferrous Alloys , Totten, G.E., Ed. (ASM International, Materials Park, OH, 2016), p. 573.Google Scholar
Integrated Computational Materials Engineering (National Academies Press, Washington, DC, 2008).Google Scholar
Wang, D., Shi, R.P., Zheng, Y.F., Banerjee, R., Fraser, H.L., Wang, Y., JOM 66, 1287 (2014).CrossRefGoogle Scholar
Zheng, Y.F., Sosa, J.M., Williams, R.E.A., Wang, Y., Banerjee, R., Fraser, H.L., Scripta Mater . 111, 81 (2016).CrossRefGoogle Scholar
Zheng, Y.F., Williams, R.E.A., Sosa, J.M., Alam, T., Wang, Y., Banerjee, R., Fraser, H.L., Acta Mater . 103, 165 (2016).CrossRefGoogle Scholar
Zheng, Y.F., Williams, R.E.A., Wang, D., Shi, R.P., Nag, S., Kami, P., Sosa, J.M., Banerjee, R., Wang, Y., Fraser, H.L., Acta Mater . 103, 850 (2016).CrossRefGoogle Scholar