Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T11:30:47.289Z Has data issue: false hasContentIssue false

Metamorphic III–V semiconductor lasers grown on silicon

Published online by Cambridge University Press:  14 March 2016

Eric Tournié
Affiliation:
Université de Montpellier, and Institut Universitaire de France, France; [email protected]
Laurent Cerutti
Affiliation:
Université de Montpellier, France; [email protected]
Jean-Baptiste Rodriguez
Affiliation:
Université de Montpellier, France; [email protected]
Huiyun Liu
Affiliation:
Department of Electronic and Electrical Engineering, University College London, UK; [email protected]
Jiang Wu
Affiliation:
Department of Electronic and Electrical Engineering, University College London, UK; [email protected]
Siming Chen
Affiliation:
Department of Electronic and Electrical Engineering, University College London, UK; [email protected]
Get access

Abstract

The epitaxial integration of III–V optoelectronic devices on silicon will be the enabling technology for full-scale deployment of silicon photonics and the key to improving communication systems. Silicon photonics also offer new opportunities for the realization of ultracompact and fully integrated sensing systems operating in the mid-infrared (MIR) regime of the spectrum. In this article, we review recent developments, through several approaches, in the direct metamorphic epitaxial growth of various III–V materials-based lasers on silicon substrates. We show that GaAs-based 1.3-μm III–V quantum dot lasers and GaSb-based MIR quantum-well lasers grown on silicon substrates can operate with low threshold current density and high operating temperature, which hold promise for the future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miller, D.A.B., Proc. IEEE 97, 1166 (2009).CrossRefGoogle Scholar
Soref, R.A., Emelett, S.J., Buchwald, W.R., J. Opt. A Pure Appl. Opt. 8, 840 (2006).CrossRefGoogle Scholar
Soref, R.A., Nat. Photonics 4, 495 (2010).CrossRefGoogle Scholar
Jalali, B., Raghunathan, V., Shori, R., Fathpour, S., Dimitropoulos, D., Stafsudd, O., IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).Google Scholar
Jalali, B., Fathpour, S., J. Lightwave Technol. 24, 4600 (2006).CrossRefGoogle Scholar
Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A., Paniccia, M., Nature 4, 725 (2005).CrossRefGoogle Scholar
Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., Michel, J., Opt. Express 20, 11316 (2012).CrossRefGoogle Scholar
Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., Grützmacher, D., Nat. Photonics 9, 88 (2015).Google Scholar
Tanabe, K., Watanabe, K., Arakawa, Y., Sci. Rep. 2, 349 (2015).CrossRefGoogle Scholar
Duan, G., Olivier, S., Malhouitre, S., Accard, A., Kaspar, P., de Valicourt, G., Levaufre, G., Girard, N., Le Liepvre, A., Shen, A., Make, D., Lelarge, F., Jany, C., Ribaud, K., Mallecot, F., Charbonnier, P., Gariah, H., Kopp, C., Gentner, J.-L., J. Lightwave Technol. 33, 976 (2015).Google Scholar
Sugo, M., Mori, H., Itoh, Y., Sakai, Y., Tachikawa, M., Jpn. J. Appl. Phys. 30, 3876 (1991).CrossRefGoogle Scholar
Yamada, T., Tachikawa, M., Sasaki, T., Mori, H., Kadota, Y., Appl. Phys. Lett. 70, 1614 (1997).Google Scholar
Zimmermann, H., Integrated Silicon Optoelectronics, Springer Series in Optical Sciences, vol. 148 (Springer-Verlag, Berlin/Heidelberg, 2010).CrossRefGoogle Scholar
Kroemer, H., J. Cryst. Growth 81, 193 (1987).Google Scholar
Ishizaka, A., Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
Kern, W., J. Electrochem. Soc. 137, 1887 (1990).Google Scholar
Madiomanana, K., Bahri, M., Rodriguez, J.B., Largeau, L., Cerutti, L., Mauguin, O., Castellano, A., Patriarche, G., Tournié, E., J. Cryst. Growth 413, 17 (2015).Google Scholar
Tournié, E., Baranov, A.N., in Advances in Semiconductor Lasers, Semiconductors and Semimetals Series, vol. 86, Coleman, J.J., Brice, A.C., Jagadish, C., Eds. (Academic Press, Burlington, VT, 2012), pp. 183226.CrossRefGoogle Scholar
Cerutti, L., Castellano, A., Rodriguez, J.-B., Bahri, M., Largeau, L., Balocchi, A., Madiomanana, K., Lelarge, F., Patriarche, G., Marie, X., Tournié, E., Appl. Phys. Lett. 106, 101102 (2015).CrossRefGoogle Scholar
Vurgaftman, I., Weih, R., Kamp, M., Meyer, J.R., Canedy, C.L., Kim, C.S., Kim, M., Bewley, W.W., Merritt, C.D., Abell, J., Höfling, S., J. Phys. D Appl. Phys. 48, 123001 (2015).Google Scholar
Bahriz, M., Lollia, G., Baranov, A.N., Teissier, R., Opt. Express 23, 1523 (2015).Google Scholar
Huang, S.H., Balakrishnan, G., Khoshakhlagh, A., Dawson, L.R., Huffaker, D.L., Appl. Phys. Lett. 97, 071102 (2008).CrossRefGoogle Scholar
Kim, Y.H., Noh, Y.K., Kim, M.D., Oh, J.E., Chung, K.S., Thin Solid Films 518, 2280 (2010).Google Scholar
Trampert, A., Tournié, E., Ploog, K.H., Appl. Phys. Lett. 66, 2265 (1995).Google Scholar
Akahane, K., Yamamoto, N., Gozu, S.-I., Ohtani, N., J. Cryst. Growth 264, 21 (2004).CrossRefGoogle Scholar
Jallipalli, A., Kutty, M.N., Balakrishnan, G., Tatebayashi, J., Nuntawong, N., Huang, S.H., Dawson, L.R., Huffaker, D.L., Mi, Z., Bhattacharya, P., Electron. Lett. 44, 1198 (2007).Google Scholar
Tatebayashi, J., Jallipalli, A., Kutty, M.N., Huang, S., Nunna, K., Balakrishnan, G., Dawson, L.R., Huffaker, D.L., IEEE J. Sel. Top. Quantum Electron. 15, 716 (2009).CrossRefGoogle Scholar
Rodriguez, J.B., Cerutti, L., Grech, P., Tournié, E., Appl. Phys. Lett. 94, 061124 (2009).CrossRefGoogle Scholar
Reboul, J., Cerutti, L., Rodriguez, J., Grech, P., Tournié, E., Appl. Phys. Lett. 99, 121113 (2011).Google Scholar
Cerutti, L., Rodriguez, J.B., Tournié, E., IEEE Photonics Technol. Lett. 22, 553 (2010).Google Scholar
Djafari Rouhani, M., Kassem, H., Dalla Torre, J., Landa, G., Rocher, A., Estève, D., Mater. Sci. Eng. B 88, 181 (2002).Google Scholar
Mi, Z., Bhattacharya, P., Yang, J., Electron. Lett. 41, 742 (2005).Google Scholar
Mi, Z., Yang, J., Bhattacharya, P., Qin, G., Ma, Z., Proc. IEEE 97, 1239 (2009).Google Scholar
Lee, A., Liu, H., Seeds, A., Semicond. Sci. Technol. 28, 015027 (2013).Google Scholar
Wu, J., Chen, S., Seeds, A., Liu, H., J. Phys. D Appl. Phys. 48, 363001 (2015).CrossRefGoogle Scholar
Wang, T., Liu, H., Lee, A., Pozzi, F., Seeds, A., Opt. Express 19, 11381 (2011).CrossRefGoogle Scholar
Lee, A.D., Jiang, Q., Tang, M., Zhang, Y., Seeds, A.J., Liu, H., IEEE J. Sel. Top. Quantum Electron. 19, 1901107 (2013).Google Scholar
Tang, M., Chen, S., Wu, J., Jiang, Q., Dorogan, V.G., Benamara, M., Mazur, Y.I., Salamo, G.J., Seeds, A., Liu, H., Opt. Express 22, 11528 (2014).Google Scholar
Chen, S., Tang, M., Wu, J., Jiang, Q., Dorogan, V.G., Benamara, M., Mazur, Y.I., Salamo, G.J., Seeds, A., Liu, H., Electron. Lett. 50, 1467 (2014).CrossRefGoogle Scholar
Chen, S., Tang, M., Jiang, Q., Wu, J., Dorogan, V.G., Benamara, M., Mazur, Y.I., Salamo, G.J., Smowton, P., Seeds, A., Liu, H., ACS Photonics 1, 638 (2014).Google Scholar
Chen, S., Tang, M., Wu, J., Jiang, Q., Dorogan, V., Benamara, M., Mazur, Y.I., Salamo, G.J., Liu, H., Photonics 2, 646 (2015).Google Scholar
Liu, H., Wang, T., Jiang, Q., Hogg, R., Tutu, F., Pozzi, F., Seeds, A., Nat. Photonics 5, 416 (2011).Google Scholar
Lee, A., Jiang, Q., Tang, M., Seeds, A., and Liu, H., Opt. Express 20, 22181 (2012).Google Scholar
Liu, A.Y., Zhang, C., Norman, J., Snyder, A., Lubyshev, D., Fastenau, J.M., Liu, A.W.K., Gossard, A.C., Bowers, J.E., Appl. Phys. Lett. 104, 041104 (2014).Google Scholar
Liu, A.Y., Srinivasan, S., Norman, J., Gossard, A.C., Bowers, J.E., IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).Google Scholar
Voltz, K., Beyer, A., Witte, W., Ohlmann, J., Németh, I., Kunert, B., Stolz, W., J. Cryst. Growth 315, 37 (2011).Google Scholar
Thanh, T.N., Robert, C., Guo, W., Letoublon, A., Cornet, C., Elias, G., Ponchet, A., Rohel, T., Bertru, N., Balocchi, A., Durand, O., Micha, J.S., Perrin, M., Loualiche, S., Marie, X., Le Corre, A., J. Appl. Phys. 112, 053521 (2012).Google Scholar
Liebich, S., Zimprich, M., Beyer, A., Lange, C., Franzbach, D.J., Chatterjee, S., Hossain, N., Sweeney, S.J., Volz, K., Kunert, B., Stolz, W., Appl. Phys. Lett. 99, 071109 (2011).Google Scholar
Gauthier, J.P., Robert, C., Almosni, S., Leger, Y., Perrin, M., Even, J., Balocchi, A., Carrère, H., Marie, X., Cornet, C., Durand, O., Appl. Phys. Lett. 105, 243111 (2014).Google Scholar
Song, Y., Lee, M.L., Appl. Phys. Lett. 103, 141906 (2013).Google Scholar
Huang, X., Song, Y., Masuda, T., Jung, D., Lee, M., Electron. Lett. 50, 1226 (2014).Google Scholar