Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T01:55:42.327Z Has data issue: false hasContentIssue false

MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Mechanical testing of micro- and nanoscale materials is challenging due to the intricate nature of specimen preparation and handling and the required load and displacement resolution. In addition, in Situ testing requires the entire experimental setup to be drastically miniaturized, because conventional high-resolution microscopes or analytical tools usually have very small chambers. These challenges are increasingly being addressed using microelectromechanical systems (MEMS)-based sensors and actuators. Because of their very small size, MEMS-based experimental setups are the natural choice for materials characterization under virtually all forms of in Situ electron, optical, and probe microscopy. The unique advantage of such in Situ studies is the simultaneous acquisition of qualitative (up to near atomic visualization of microstructures and deformation mechanisms) and quantitative (load, displacement, flaw size) information of fundamental materials behavior. In this article, we provide a state-of-the-art overview of design and fabrication of MEMS-based devices for nanomechanical testing. We also provide a few case studies on thin films, nanowires, and nanotubes, as well as adhesion-friction testing with a focus on in Situ microscopy. We conclude that MEMS devices offer superior choices in handling, actuation, and force and displacement resolutions. Particularly, their tight tolerances and small footprints are difficult to match by off-the-shelf techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arzt, E., Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
2.Van Swygenhoven, H., Weertman, J.R., Mater. Today 9, 24 (2006).CrossRefGoogle Scholar
3.Ovid'ko, I., J. Mater. Sci. 42, 1694 (2007).CrossRefGoogle Scholar
4.Agrawal, R., Espinosa, H.D., J. Eng. Mater. Technol. 131 041208 (2009).CrossRefGoogle Scholar
5.Haque, M.A., Saif, M.T.A., in Handbook on Experimental Mechanics, Sharpe, W.N., Ed. (Society of Experimental Mechanics, CT, 2008).Google Scholar
6.Gianola, D.S., Eberl, C., JOM 61, 24 (2009).CrossRefGoogle Scholar
7.Zhu, Y., Espinosa, H.D., Proc. Nat. Acad. Sci. U.S.A. 102, 14503 (2005).CrossRefGoogle Scholar
8.Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G.C., Espinosa, H.D. et al., Nat. Nanotechnol. 1, 626 (2008).CrossRefGoogle Scholar
9.Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D., Nano Lett. 8, 3668 (2008).CrossRefGoogle Scholar
10.Agrawal, R., Peng, B., Espinosa, H.D., Nano Lett. 9, 4177 (2009).CrossRefGoogle Scholar
11.Newbury, D.E., Williams, D.B., Acta Mater. 48, 323 (2000).CrossRefGoogle Scholar
12.Zhu, Y., Moldovan, N., Espinosa, H.D., Appl. Phys. Lett. 86, 013506 (2005).CrossRefGoogle Scholar
13.Espinosa, H.D., Zhu, Y., Moldovan, N., J. Microelectromech. Syst. 16, 1219 (2007).CrossRefGoogle Scholar
14.Robertson, I.M., Ferreira, P.J., Dehm, G., Hull, R., Stach, E.A., MRS Bull. 33, 122 (2008).CrossRefGoogle Scholar
15.Banhart, F., Ed., In-Situ Electron Microscopy at High Resolution (World Scientific, NJ, 2008).CrossRefGoogle Scholar
16.Cummings, J., Olsson, E., Petford-Long, A.K., Zhu, Y., MRS Bull. 33, 101 (2008).CrossRefGoogle Scholar
17.Couret, A., Crestou, J., Farenc, S., Molénat, G., Clément, N., Coujou, A., Caillard, D., Microsc. Microanal. Microstruct. 4, 153 (1993).CrossRefGoogle Scholar
18.Messerschmidt, U., J. Phys. 3 (7) Part 3, 2123 (1993).Google Scholar
19.Dehm, G., Legros, M., Heiland, B., J. Mater. Sci. 41, 4484 (2006).CrossRefGoogle Scholar
20.Haque, M.A., Saif, M.T.A., Proc. Nat. Acad. Sci. 101, 6335 (2004).CrossRefGoogle Scholar
21.Haque, M., Saif, M., Exp. Mech. 43, 248 (2003).CrossRefGoogle Scholar
22.Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O., Mater. Sci. Eng. A 334, 173 (2002).CrossRefGoogle Scholar
23.Han, J.H., Saif, M.T.A., Rev. Sci. Instrum. 77, 045102 (2006).CrossRefGoogle Scholar
24.Zhang, M., Olson, E.A., Twesten, R.D., Wen, J.G., Allen, L.H., Robertson, I.M., Petrov, I., J. Mater. Res. 20, 1802 (2005).CrossRefGoogle Scholar
25.Zhang, D., Drissen, W., Breguet, J.-M., Clavel, R., Michler, J., J. Micromech. Microeng. 19, 075003 (2009).CrossRefGoogle Scholar
26.Lang, U., Dual, J., in Applied Scanning Probe Methods XIII (Springer, NY, 2009), pp. 165182.CrossRefGoogle Scholar
27.Zhu, Y., Ke, C., Espinosa, H.D., Exp. Mech. 47, 7 (2007).CrossRefGoogle Scholar
28.Locascio, M., Peng, B., Zapol, P., Zhu, Y., Li, S., Belytschko, T., Espinosa, H.D., Exp. Mech. 49, 169 (2009).CrossRefGoogle Scholar
29.Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A., Follstaedt, D.M., Acta Mater. 51, 1937 (2003).CrossRefGoogle Scholar
30.Legros, M., Gianola, D.S., Hemker, K.J., Acta Mater. 56, 3380 (2008).CrossRefGoogle Scholar
31.Oh, S.H., Legros, M., Kiener, D., Gruber, P., Dehm, G., Acta Mater. 55, 5558 (2007).CrossRefGoogle Scholar
32.Sen, D., Buehler, M.J., Phys. Rev. B: Condens. Matter 77, 195439 (2008).CrossRefGoogle Scholar
33.Wolf, D., Yamakov, V., Phillpot, S.R., Mukherjee, A., Gleiter, H., Acta Mater. 53, 1 (2005).CrossRefGoogle Scholar
34.Espinosa, H.D., Berbenni, S., Panico, M., Schwarz, K.W., Proc. Nat. Acad. Sci. 102, 16933 (2005).CrossRefGoogle Scholar
35.Tang, H., Schwarz, K.W., Espinosa, H.D., Phys. Rev. Lett. 100, 185503 (2008).CrossRefGoogle Scholar
36.Baretzky, B., Baró, M.D., Grabovetskaya, G.P., Gubicza, J., Ivanov, M.B., Kolobov, Y.R., Rev. Adv. Mater. Sci. 9, 45 (2005).Google Scholar
37.Shan, Z.W., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., Mao, S.X., Science 305, 654 (2004).CrossRefGoogle Scholar
38.Lin, A., Meyers, M., Vecchio, K., Mater. Sci. Eng. C 26, 1380 (2006).CrossRefGoogle Scholar
39.Rajagopalan, J., Han, J.H., Saif, M.T.A., Science 315, 1831 (2007).CrossRefGoogle Scholar
40.Kumar, S., Haque, M.A., Gao, H., Appl. Phys. Lett. 94, 253104 (2009).CrossRefGoogle Scholar
41.Wang, N., Wang, Z., Aust, K.T., Erb, U., Acta Metall. Mater. 43, 519 (1995).CrossRefGoogle Scholar
42.Hosokawa, H., Desai, A.V., Haque, M.A., Thin Solid Films 516, 6444 (2008).CrossRefGoogle Scholar
43.Gao, H., Ji, B., Jager, I.L., Arzt, E., Fratzl, P., Proc. Nat. Acad. Sci. U.S.A. 100, 5597 (2003).CrossRefGoogle Scholar
44.He, R., Yang, P., Nat. Nano 1, 42 (2006).CrossRefGoogle Scholar
45.Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tang, M., Wu, S.-Y., Nature 405, 769 (2000).CrossRefGoogle Scholar
46.Baek, C.W., Kim, J.M., Kim, Y.K., Kim, J.H., Lee, H.J., Han, S.W., Sens. Mater. 17, 277 (2005).Google Scholar
47.Van Landingham, M.R., Microsc. Today 97, 12 (1997).CrossRefGoogle Scholar
48.Armstrong, M.R., Boyden, K., Browning, N.D., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., et al., Ultramicroscopy 107, 356 (2007).CrossRefGoogle Scholar
49.Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., Campbell, G.H., Science 321, 1472 (2008).CrossRefGoogle Scholar
50.Haque, M.A., Saif, M.T.A., J. Mater. Res. 20 (7), 1770 (2005).CrossRefGoogle Scholar