Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T08:51:50.906Z Has data issue: false hasContentIssue false

Materials Screening and Applications of Plasmonic Crystals

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Surface plasmon polaritons are responsible for various optical phenomena, including negative refraction, enhanced optical transmission, and nanoscale focusing. Although many materials support plasmons, the choice of metal for most applications has been based on traditional plasmonic materials, such as Ag and Au, because there have been no side-by-side comparisons of different materials on well-defined, nanostructured surfaces. This article will describe how a multiscale patterning approach based on soft interference lithography can be used to create plasmonic crystals with different unit cell shapes—circular holes or square pyramids—which can be used as a platform to screen for new materials. The dispersion diagrams of plasmonic crystals made from unconventional metals will be presented, and the implications of discovering new optical coupling mechanisms and protein-sensing substrates based on Pd will be described. Finally, the opportunities enabled by this plasmonic library to dial into specific resonances for any angle or material will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Odom, T.W., Nehl, C.L., ACS Nano 2, 616 (2008).CrossRefGoogle Scholar
2. Brongersma, M.L., Kik, P., Surface Plasmon Nanophotonics (Springer, NY, 2007).CrossRefGoogle Scholar
3. Stiles, P., Dieringer, J., Shah, N.C., Duyne, R.P.V., Ann. Rev. Anal. Chem. 1, 601 (2008).CrossRefGoogle Scholar
4. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988).CrossRefGoogle Scholar
5. Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X., Nat. Photonics 2, 496 (2008).CrossRefGoogle Scholar
6. Shalaev, V.M., Nat. Photonics 1, 41 (2006).CrossRefGoogle Scholar
7. Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Baral, G., Zhang, X., Nature 455, 376 (2008).CrossRefGoogle Scholar
8. Cooper, M.A., Nat. Rev. Drug Discovery 1, 515 (2002).CrossRefGoogle ScholarPubMed
9. Srituravanich, W., Pan, L., Wang, Y., Sun, C., Bogy, D.B., Zhang, X., Nat. Nanotechnol. 3, 733 (2008).CrossRefGoogle Scholar
10. Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A., J. Am. Chem. Soc 128, 2115 (2006).CrossRefGoogle Scholar
11. Homola, J., Surface Plasmon Resonance Based Sensors (Springer, NY, 2006).CrossRefGoogle Scholar
12. Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A., Nano Lett. 8, 4391 (2008).CrossRefGoogle Scholar
13. Dintinger, J., Degiron, A., Ebbesen, T.W., MRS Bull. 30, (2005).Google Scholar
14. Gao, H., McMahon, J.M., Lee, M.H., Henzie, J., Gray, S.K., Schatz, G.C., Odom, T.W., Opt. Express 17, 2334 (2009).CrossRefGoogle Scholar
15. Gao, H., Henzie, J., Lee, M.H., Odom, T.W., Proc. Nat. Acad. Sci. 105, (2008).Google Scholar
16. Henzie, J., Lee, M.H., Odom, T.W., Nat. Nanotechnol. 2, 549 (2007).CrossRefGoogle Scholar
17. Le, F., Brandl, D.W., Urzhumov, Y.A., Wang, H., Kundu, J., Halas, N.J., Aizpurua, J., Nordlander, P., ACS Nano 2 (2008).Google Scholar
18. Lee, M.H., Gao, H., Odom, T.W., Nano Lett. 9, 2584 (2009).CrossRefGoogle Scholar
19. Tao, A., Sinsermsuksakul, P., Yang, P., Nat. Nanotechnol. 2, 435 (2006).CrossRefGoogle Scholar
20. Zentgraf, T., Christ, A., Kuhl, J., Gippius, N.A., Tikhodeev, S.G., Nau, D., Giessen, H., Phys. Rev. B 73, (2006).Google Scholar
21. Stewart, M.E., Mack, N.H., Malyarchuk, V., J.Soares, A.N.T., Lee, T., Gray, S.K., Nuzzo, R.G., Rogers, J.A., PNAS, 103, 17143 (2006).CrossRefGoogle Scholar
22. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., Nature 391, 667 (1998).CrossRefGoogle Scholar
23. Henzie, J., Lee, M.H., Odom, T.W., Nat. Nanotechnol. 2, 549 (2007).CrossRefGoogle Scholar
24. Henzie, J., Lee, J., Lee, M.H., Hasan, W., Odom, T.W., Annu. Rev. Phys. Chem. 60, 147 (2009).CrossRefGoogle Scholar
25. Gao, H., Henzie, J., Odom, T.W., Nano Lett. 6, 2104 (2006).CrossRefGoogle Scholar
26. Kwak, E.-S., Henzie, J., Chang, S.-T., Gray, S.K., Schatz, G.C., Odom, T.W., Nano Lett. 5, 1963 (2005).CrossRefGoogle Scholar
27. Barnes, W.L., Murray, A.W., Dintinger, J., Devaux, E., Lezec, H.J., Ebbesen, T.W., Phys. Rev. Lett. 92, 107401 (2004).CrossRefGoogle Scholar
28. Barnes, W.L., Priest, T.W., Kitson, S.C., Sambles, J.R., Phys. Rev. B 54, 6227 (1996).CrossRefGoogle Scholar
29. Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J., Martin-Moreno, L., Garcia-Vidal, F.J., Opt. Commun. 200, 1 (2001).CrossRefGoogle Scholar
30. McMahon, J.M., Henzie, J., Odom, T.W., Schatz, G.C., Gray, S.K., Opt. Express 15, 18119 (2007).CrossRefGoogle Scholar
31. Sarid, D., Phys. Rev. Lett. 47, 1927 (1981).CrossRefGoogle Scholar
32. Martin-Moreno, L., Gracia-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W., Phys. Rev. Lett. 86, 1114 (2001).CrossRefGoogle Scholar
33. Johnson, P.B., Christy, R.W., Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
34. Johnson, P.B., Christy, R.W., Phys. Rev. B 9, 5056 (1974).CrossRefGoogle Scholar
35. Jiang, X., Bruzewicz, D.A., Thant, M.M., Whitesides, G.M., Anal. Chem. 76, 6116 (2004).CrossRefGoogle Scholar
36. Rindzevicius, T., Alaverdyan, Y., Dahlin, A., Hook, F., Sutherland, D.S., Kall, M., Nano Lett. 5, 2335 (2005).CrossRefGoogle Scholar
37. Leebeeck, A., Kumar, L., Lange, V., Sinton, D., Gordon, R., Brolo, A., Anal. Chem. 79, 4094 (2007).CrossRefGoogle Scholar
38. Kuriharaa, K., Nakamurab, K., Suzuki, K., Sens. Actuators, B 86, 49 (2002).CrossRefGoogle Scholar