Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T09:09:06.406Z Has data issue: false hasContentIssue false

Materials by design—A perspective from atoms to structures

Published online by Cambridge University Press:  06 February 2013

Markus J. Buehler*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; [email protected]
Get access

Abstract

Biological materials are effectively synthesized, controlled, and used for a variety of purposes in Nature—in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, even linking music to materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clottes, J., Chauvet Cave: The Art of Earliest Times, P.G. Bahn. (translator), (University of Utah Press, Salt Lake City, 2003).Google Scholar
2. Patel, A.D., Nat. Neurosci. 6 (7), 674 (2003).Google Scholar
3. Gronau, G., Krishnaji, S.T., Kinahan, M.E., Giesa, T., Wong, J.Y., Kaplan, D.L., Buehler, M.J., Biomaterials 33 (33), 8240 (2012).Google Scholar
4. Krishnaj, S.T., Bratzel, G., Kinahan, M.E., Kluge, J.A., Staii, C., Wong, J.Y., Buehler, M.J., Kaplan, D.L., Adv. Funct. Mater. (2012), doi: 10.1002/adfm.201200510.Google Scholar
5. Wong, J.Y., McDonald, J., Taylor-Pinney, M., Spivak, D.I., Kaplan, D.L., Buehler, M.J., Nano Today 7 (6), 488 (2012).Google Scholar
6. Espinosa, H.D., Rim, J.E., Barthelat, F., Buehler, M.J., Prog. Mater. Sci. 54 (8), 1059 (2009).Google Scholar
7. Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52 (8), 1263 (2007).Google Scholar
8. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y., Prog. Mater. Sci. 53 (1), 1 (2008).Google Scholar
9. Huebsch, N., Mooney, D.J., Nature 462 (7272), 426 (2009).Google Scholar
10. Cranford, S.W., Buehler, M.J., Biomateriomics, 1st ed. (Springer, New York, 2012).Google Scholar
11. Omenetto, F.G., Kaplan, D.L., Science 329 (5991), 528 (2010).Google Scholar
12. Buehler, M.J., Ackbarow, T., Mater. Today 10 (9), 46 (2007).CrossRefGoogle Scholar
13. Buehler, M.J., Nano Today 5 (5), 379 (2010).CrossRefGoogle Scholar
14. Spivak, D.I., Kent, R.E., PLoS ONE 7 (1), e24274 (2012).Google Scholar
15. Giesa, T., Spivak, D., Buehler, M., Adv. Eng. Mater. (2012), doi:10.1002/adem.201200109.Google Scholar
16. Mac Lane, S., Categories for the Working Mathematician (Springer, New York, 1998).Google Scholar
17. Spivak, D.I., Giesa, T., Wood, E., Buehler, M.J., PLoS ONE 6 (9), (2011).Google Scholar
18. Giesa, T., Spivak, D., Buehler, M.J., BioNanoScience 1 (4), 153 (2011).Google Scholar
19. Buehler, M.J., Yung, Y.C., Nat. Mater. 8 (3), 175 (2009).Google Scholar
20. Huang, X.P., Liu, G.Q., Wang, X.W., Adv. Mater. 24 (11), 1482 (2012).Google Scholar
21. Blackledge, T.A., Kuntner, M., Agnarsson, I., Adv. Insect Physiol. 41, 175 (2011).CrossRefGoogle Scholar
22. Rammensee, S., Slotta, U., Scheibel, T., Bausch, A.R., Proc. Natl. Acad. Sci. U.S.A. 105 (18), 6590 (2008).Google Scholar
23. Scheibel, T., Appl. Phys. A 82 (2), 191 (2006).Google Scholar
24. Omenetto, F., Kaplan, D., Sci. Am. 303 (5), 76 (2010).Google Scholar
25. Bratzel, G., Buehler, M.J., J. Mech. Behav. Biomed. Mater. 7, 30 (2012).Google Scholar
26. Cranford, S.W., Tarakanova, A., Pugno, N.M., Buehler, M.J., Nature 482 (7383), 72 (2012).Google Scholar
27. Giesa, T., Arslan, M., Pugno, N.M., Buehler, M.J., Nano Lett. 11 (11), 5038 (2011).Google Scholar
28. Keten, S., Buehler, M.J., J. R. Soc. Interface 7 (53), 1709 (2010).Google Scholar
29. Keten, S., Xu, Z., Ihle, B., Buehler, M.J., Nat. Mater. 9 (4), 359 (2010).Google Scholar
30. Nova, A., Keten, S., Pugno, N.M., Redaelli, A., Buehler, M.J., Nano Lett. 10 (7), 2626 (2010).Google Scholar
31. Tarakanova, A., Buehler, M.J., JOM 64 (2), 214 (2012).CrossRefGoogle Scholar
32. Kaplan, D., Adams, W.W., Farmer, B., Viney, C., Silk Polym. 544, 2 (1994).Google Scholar
33. Knowles, T.P.J., Buehler, M.J., Nat. Nanotechnol. 6 (8), 469 (2011).Google Scholar
34. Cranford, S., De Boer, J., van Blitterswijk, C., Buehler, M.J., Adv. Mater. (2013), doi: 10.1002/adma.201202553.Google Scholar