Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:20:36.814Z Has data issue: false hasContentIssue false

Iron-based materials strategies

Published online by Cambridge University Press:  09 May 2014

Atsuo Yamada*
Affiliation:
University of Tokyo, Japan; [email protected]
Get access

Abstract

“Abundance” is an important keyword in materials development. This is particularly the case for the energy storage sector, where materials themselves function as a storage host. The amount of materials is directly linked to the amount of energy stored in the device. In lithium (Li)-ion batteries, transition metal elements are necessary to accommodate a large number of electrons/holes in a reversible redox reaction. Iron, as the fourth most abundant element in the earth’s crust, is an ideal redox center, but practical storage electrodes with Fe redox have long been the “holy grail” of the Li-ion battery since its commercialization in 1991. In this article, the history of replacing Co with Fe in Li-battery electrodes is briefly reviewed followed by recent technical achievements toward more sustainable batteries using Na+ as a guest ion, where the goal would be to discover a high voltage electrode material composed of Na and Fe without compromising the energy density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).Google Scholar
Thackeray, M.M., Johonson, P.J., de Picciotto, L.A., Bruce, P.G., Goodenough, J.B., Mater. Res. Bull. 19, 179 (1984).CrossRefGoogle Scholar
Yamada, A., Chung, S.C., Hinokuma, K., J. Electrochem. Soc. 148, A224 (2001).Google Scholar
Wu, E.J., Tepech, P.D., Ceder, G., Philos. Mag. 77, 1039 (1998).Google Scholar
Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S., Goodenough, J.B., J. Electrochem. Soc. 144, 1609 (1997).Google Scholar
Padhi, A.K., Nabjundasawamy, K.S., Goodnough, J.B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
Morgan, D., der Ven, A.V., Ceder, G., Electrochem. Solid State Lett. 7, A30 (2004).Google Scholar
Islam, S., Driscoll, D., Fisher, C., Slater, P., Chem. Mater. 17, 5085 (2005).Google Scholar
Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., Yamada, A., Nat. Mater. 7, 707 (2008).CrossRefGoogle Scholar
Malik, R., Burch, D., Bazant, M., Ceder, G., Nano Lett. 10, 4123 (2010).CrossRefGoogle Scholar
Chung, S.Y., Bloking, J.T., Chiang, Y.M., Nat. Mater. 1, 123 (2002).Google Scholar
Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C., Electrochem. Solid-State Lett. 9, A352 (2006).Google Scholar
Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., Armand, M., J. Power Sources 97–98, 503 (2001).Google Scholar
Nyten, A., Abouimrane, A., Armand, M., Gustafsson, T., Thomas, J.O., Electrochem. Commun. 7, 156 (2005).CrossRefGoogle Scholar
Ellis, B.L., Makahnouk, W.R.M., Makimura, Y., Toghill, K., Nazar, L.F., Nat. Mater. 6, 749 (2007).Google Scholar
Nishimura, S., Nakamura, M., Natsui, R., Yamada, A., J. Am. Chem. Soc. 132, 13596 (2010).Google Scholar
Rangappa, D., Murukanahally, K.D., Tomai, T., Umemoto, A., Honma, I., Nano Lett. 12, 1146 (2012).CrossRefGoogle Scholar
Muraliganth, T., Stroukoff, K.R., Manthiram, A., Chem. Mater. 22, 5754 (2010).CrossRefGoogle Scholar
Lu, D., Bai, J., Zhang, P., Wu, S., Li, Y., Wen, W., Jiang, Z., Mi, J., Zhu, Z., Yang, Y., Chem. Mater. 25, 2014 (2013).Google Scholar
Yamada, A., Iwane, N., Harada, Y., Nishimura, S., Koyama, Y., Tanaka, I., Adv. Mater. 22, 3583 (2010).Google Scholar
Yamada, A., Iwane, N., Nishimura, S., Koyama, Y., Tanaka, I., J. Mater. Chem. 21, 10690 (2011).Google Scholar
Recham, N., Chotard, J.-N., Dupont, L., Delacourt, C., Walker, W., Armand, M., Tarascon, J.M., Nat. Mater. 9, 68 (2010).Google Scholar
Barpanda, P., Ati, M., Melot, B.C., Rosse, G., Chotard, J.-N., Doublet, M.-L., Sougrati, M.T., Corr, S.A., Jumas, J.-C., Tarascon, J.M., Nat. Mater. 10, 772 (2011).Google Scholar
Chung, S.C., Barpanda, P., Nishimura, S., Yamada, Y., Yamada, A., Phys. Chem. Chem. Phys. 14, 8678 (2012).Google Scholar
Furuta, N., Nishimura, S., Barpanda, P., Yamada, A., Chem. Mater. 24, 1055 (2012).CrossRefGoogle Scholar
Ye, T., Barpanda, P., Nishimura, S., Furuta, N., Chung, S.C., Yamada, A., Chem. Mater. 25, 3623 (2013).CrossRefGoogle Scholar
Barpanda, P., Nishimura, S., Yamada, A., Adv. Energy Mater. 2, 841 (2012).Google Scholar
Tamaru, M., Chung, S.C., Shimizu, D., Nishimura, S.. Yamada, A., Chem. Mater. 25, 2538 (2013).Google Scholar
Lu, J., Chung, S.C., Nishimura, S., Yamada, A., Chem. Mater. 25, 4557 (2013).CrossRefGoogle Scholar
Moreau, P., Guyomard, D., Gaubicher, J., Boucher, F., Chem. Mater. 22, 4126 (2010).Google Scholar
Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., Kanno, R., Mater. Res. Bull. 29, 659 (1994).Google Scholar
Zhao, J., Zhao, L., Dimov, N., Okada, S., Nishida, T., J. Electrochem. Soc. 160, A3077 (2013).Google Scholar
Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., Nat. Mater. 11, 512 (2012).Google Scholar
Barpanda, P., Ye, T., Nishimura, S., Chung, S.C., Yamada, Y., Ohkubo, M., Zhou, H., Yamada, A., Electrochem. Commun. 24, 116 (2012).Google Scholar
Kim, H., Park, I., Seo, D.H., Lee, S., Kim, S.W., Kwon, W.J., Park, Y.U., Kim, C.S., Jeon, S., Kang, K., J. Am. Chem. Soc. 134, 10369 (2012).Google Scholar
Fukunaga, A., Nohira, T., Kozawa, Y., Hagiwara, R., Sakai, S., Nitta, K., Nishizawa, S., J. Power Sources 209, 52 (2012).CrossRefGoogle Scholar
Chen, C.Y., Ding, C., Matsumoto, K., Nohira, T., Hagiwara, R., Orikasa, Y., Uchimoto, Y., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S., The 54th Battery Symposium in Japan, Abstract 3D-02 (2013).Google Scholar
Sagane, F., Abe, T., Iriyama, Y., Ogumi, Z., J. Power Sources 146, 749 (2005).Google Scholar
Okoshi, M., Yamada, Y., Yamada, A., Nakai, H., J. Electrochem. Soc. 160, A2160 (2013).Google Scholar
Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., Ceder, G., Energy Environ. Sci. 4, 3680 (2011).Google Scholar
Yamada, A., Barpanda, P., Nishimura, S., Oyama, G., PatentJP2013-187914 (2013).Google Scholar
Clarke, F.W., Washington, H.S., The Composition of the Earth’s Crust (US Department of the Interior, Washington, DC, 1924).Google Scholar