Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T06:35:01.943Z Has data issue: false hasContentIssue false

Ion Tracks in Metals and Intermetallic Compounds

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

When an energetic ion penetrates a target, it loses its energy via two nearly independent processes: (1) elastic collisions with the nuclei (nuclear-energy loss (dE/dx)n), which dominate the ion slowing down in the low energy range (i.e., in the stopping region); (2) electronic excitation and ionization (electronic-energy loss (dE/dx)e), which strongly overwhelm (dE/dx)n in the high energy range (typically above 1 MeV/nucleon). Until the 1980s, researchers considered that electronic-energy deposition could participate in damaging creation in many insulators, but the effects observed in bulk metals were solely ascribed to elastic nuclear collisions. This widely held opinion was due to the fact that in metallic systems the numerous very mobile conduction electrons allow a fast spreading of the deposited energy and an efficient screening of the space charge created in the projectile wake so that it seemed unreasonable to hope for damage creation or track formation in metallic targets following high levels of electronic-energy deposition.

A particular case is the observation more than 30 years ago of damage in thin or discontinuous. metallic films after fission fragment irradiation or MeV heavy ion bombardment. The spreading of the deposited energy is then strongly limited by the close vicinity of surfaces and interfaces.

Type
Ion Tracks in Solids
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fleischer, R.L., Price, P.B., and Walker, R.M., J. Appl. Phys. 36 (1965) p. 3645; Nuclear Tracks in Solids (University of California Press, Berkeley, 1975).CrossRefGoogle Scholar
2.Noggle, T.S. and Stiegler, J.O., J. Appl. Phys. 33 (1962) p. 1726.CrossRefGoogle Scholar
3.Merkle, K.L., Phys. Rev. Lett. 9 (1962) p. 150.CrossRefGoogle Scholar
4.Andersen, H.H., Knudsen, H., and Petersen, P. Moller, J. Appl. Phys. 49 (1978) p. 5638.CrossRefGoogle Scholar
5.Mori, H. and Fujita, H., Jpn. J. Appl. Phys. 21 (1982) p. L494.CrossRefGoogle Scholar
6.Koike, J., Okamoto, P.R., Rehn, L.E., and Meshii, M., Metall. Trans. 21A (1990) p. 1799.CrossRefGoogle Scholar
7.Barbu, A., Martin, G., Toulemonde, M., and Jousset, J.C., C.R. Acad. Sci. Paris 299 (1984) p. 409.Google Scholar
8.Barbu, A., Dunlop, A., Lesueur, D., and Jaskierowicz, G., in Ordering and Disordering in Alloys, edited by Yaravi, A.R. (Elsevier, Amsterdam, 1992) p. 295.CrossRefGoogle Scholar
9.Dunlop, A., Lesueur, D., Morillo, J., Dural, J., Spohr, R., and Vetter, J., Nucl. Instrum. Methods B48 (1990) p. 419.CrossRefGoogle Scholar
10.Barbu, A., Dunlop, A., Lesueur, D., and Averback, R.S., Europhys. Lett. 15 (1991) p. 37.CrossRefGoogle Scholar
11.Dunlop, A., Lesueur, D., and Barbu, A., J. Nucl. Mater. 205 (1993) p. 426.CrossRefGoogle Scholar
12.Audouard, A., Balanzat, E., Bouffard, S., Jousset, J.C., Chamberod, A., Dunlop, A., Lesueur, D., Fuchs, G., Spohr, R., Vetter, J., and Thome, L., Phys. Rev. Lett. 65 (1990) p. 875.CrossRefGoogle Scholar
13.Audouard, A., Dunlop, A., Lesueur, D., Lorenzelli, N., and Thome, L. (in press).Google Scholar
14.Barbu, A., Dunlop, A., Henry, J., Lesueur, D., and Lorenzelli, N., Mater. Sci. Forum 97–99 (1992) p. 577.CrossRefGoogle Scholar
15.Barbu, A., Dunlop, A., Jaskierowicz, G., and Lorenzelli, N. (in press).Google Scholar
16.Dunlop, A., Lesueur, D., and Dural, J., Nucl. Instrum. Methods B42 (1989) p. 182.CrossRefGoogle Scholar
17.Dunlop, A. and Lesueur, D., Radiat. Eff. Def. Sol. 126 (1993) p. 123.CrossRefGoogle Scholar
18.Legrand, P., Dunlop, A., Lesueur, D., Lorenzelli, N., Morillo, J., and Bouffard, S., Mater. Sci. Forum 97–99 (1992) p. 587.CrossRefGoogle Scholar
19.Dunlop, A., Lesueur, D., Legrand, P., Dammak, H., and Dural, J., Nucl. Instrum. Methods B90 (1994) p. 330.CrossRefGoogle Scholar
20.Henry, J., Barbu, A., Leridon, B., Lesueur, D., and Dunlop, A., Nucl. Instrum. Methods B67 (1992) p. 390.CrossRefGoogle Scholar
21.Dammak, H., Barbu, A., Dunlop, A., Lesueur, D., and Lorenzelli, N., Philos. Mag. Lett. 67 (1993) p. 253.CrossRefGoogle Scholar
22.Dammak, H., PhD dissertation, Ecole Polytechnique, 1994, published as CEA Report R 5668, H. Dammak, A. Dunlop, and D. Lesueur (NIMB) in press.Google Scholar
23.Sikka, S.K., Vohra, Y.K., and Chidambaram, R., Prog. Mater. Sci. 27 (1982) p. 245.CrossRefGoogle Scholar
24.Murray, J.L., Phase Diagrams of Binary Titanium Alloys (ASM International, 1987).Google Scholar
25.Klaumünzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Söldner, L., and Bieger, H., Acta Metall. 30 (1982) p. 1493.CrossRefGoogle Scholar
26.Klaumünzer, S., Li, Changlin, Löffler, S., Rammensee, M., Schumacher, G., and H.CNeitzert, h., Radiat. Eff. Def. Sol. 108 (1989) p. 131.CrossRefGoogle Scholar
27.Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thome, L., Europhys. Lett. 3 (1987) p. 327; and Nucl. Instrum. Methods B39 (1989) p. 18.CrossRefGoogle Scholar
28.Audouard, A., Balanzat, E., Jousset, J.C., Lesueur, D., and Thome, L., J. Phys. Condens. Matter 5 (1993) p. 995.CrossRefGoogle Scholar
29.Hou, Ming-Dong, Klaumünzer, S., and Schumacher, G., Phys. Rev. B41 (1990) p. 1144.CrossRefGoogle Scholar
30.Trautman, C., Spohr, R., and Toulemonde, M., Nucl. Instrum. Methods B83 (1993) p. 513.CrossRefGoogle Scholar
31.Chadderton, L.T. and Montagu-Pollok, H., Proc. R. Soc. A274 (1969) p. 239.Google Scholar
32.Toulemonde, M., Dufour, C., and Paumier, E., Phys. Rev. B46 (1992) p. 14,362.CrossRefGoogle Scholar
33.Bitensky, L.S. and Parilis, E.S., Nucl. Instrum. Methods B21 (1987) p. 26.CrossRefGoogle Scholar
34.Lesueur, D. and Dunlop, A., Radiat. Eff. Def. Sol. 126 (1993) p. 163.CrossRefGoogle Scholar
35.Legrand, P., Morillo, J., and Pontikis, V., Radiat. Eff. Def. Sol. 126 (1993) p. 151.CrossRefGoogle Scholar
36.Legrand, P., thesis (1993).Google Scholar
37.Bullough, R. and Gilman, J.J., J. Appl. Phys. 37 (1966) p. 2283.CrossRefGoogle Scholar
38.Dunlop, A., Legrand, P., Lesueur, D., Lorenzelli, N., Morillo, J., Barbu, A., and Bouffard, S., Europhys. Lett. 15 (1991) p. 765.CrossRefGoogle Scholar
39.Dammak, H., Dunlop, A., Lesueur, D., Brunelle, A., Della-Negra, S., and Beyec, Y. Le, Phys. Rev. Lett. 74 (1995) p. 1135.CrossRefGoogle Scholar