Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T02:43:29.540Z Has data issue: false hasContentIssue false

Intrinsic magnetic field effects in organic semiconductors

Published online by Cambridge University Press:  15 July 2014

Markus Wohlgenannt
Affiliation:
Department of Physics and Astronomy, University of Iowa, USA;[email protected]
Peter A. Bobbert
Affiliation:
Eindhoven University of Technology, The Netherlands;[email protected]
Bert Koopmans
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, The Netherlands;[email protected]
Get access

Abstract

The effects of a magnetic field on the current in sandwich devices of a nonmagnetic material in-between two ferromagnetic electrodes are well known. However, magnetic-field effects also occur in the responses of devices of organic semiconductors sandwiched in-between non-ferromagnetic electrodes, providing an entirely new route toward organic spintronics. The precise origins of these “intrinsic” magnetic field effects are still unclear. They appear to be related to spin-selective reactions between paramagnetic entities such as electrons, holes, and triplet excitons. We present an overview of these effects and discuss three recent developments that shed new light on them: (1) tuning of the effects in molecularly engineered systems, (2) the discovery of ultrahigh magnetoresistance in molecular wires, and (3) the discovery of “fringe-field” magnetoresistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, W.R., Nature 397, 121 (1999).CrossRefGoogle Scholar
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001).Google Scholar
Bobbert, P.A., Nguyen, T.D., van Oost, F.W.A., Koopmans, B., Wohlgenannt, M., Phys. Rev. Lett. 99, 216801 (2007).CrossRefGoogle Scholar
Awschalom, D.D., Flatté, M.E., Nat. Phys. 3, 153 (2007).Google Scholar
Flatté, M., IEEE Trans. Electron Devices 54, 907 (2007).Google Scholar
Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
Binasch, G., Grunberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B: Condens. Matter 39, 4828 (1989).Google Scholar
Johnson, M., Silsbee, R.H., Phys. Rev. B: Condens. Matter 37, 5326 (1988).Google Scholar
Julliere, M., Phys. Lett. A 54, 225 (1975).Google Scholar
Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).Google Scholar
Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J., Phys. Rev. B: Condens. Matter 62, R4790 (2000).CrossRefGoogle Scholar
Naber, W.J.M., Faez, S., van der Wiel, W.G., J. Phys. D: Appl. Phys. 40, R205 (2007).Google Scholar
Dediu, V.A., Hueso, L.E., Bergenti, I., Taliani, C., Nat. Mater. 8, 707 (2009).CrossRefGoogle Scholar
Kalinowski, J., Cocchi, M., Virgili, D., Di Marco, P., Fattori, V., Chem. Phys. Lett. 380, 710 (2003).Google Scholar
Francis, T.L., Mermer, O., Veeraraghavan, G., Wohlgenannt, M., New J. Phys. 6, 185 (2004).Google Scholar
Hu, B., Wu, Y., Nat. Mater. 6, 985 (2007).Google Scholar
Bloom, F.L., Wagemans, W., Kemerink, M., Koopmans, B., Phys. Rev. Lett. 99, 257201 (2007).CrossRefGoogle Scholar
Mermer, Ö., Veeraraghavan, G., Francis, T.L., Sheng, Y., Nguyen, D.T., Wohlgenannt, M., Köhler, A., Al-Suti, M.K., Khan, M.S., Phys. Rev. B: Condens. Matter 72, 205202 (2005).Google Scholar
Schulten, K., Festkörperprobleme/Adv. Solid State Phys. 22, 61 (1982).Google Scholar
Nguyen, T.D., Hukic-Markosian, G., Wang, F., Wojcik, L., Li, X.-G., Ehrenfreund, E., Vardeny, Z.V., Nat. Mater. 9, 345 (2010).CrossRefGoogle Scholar
Bergeson, J.D., Prigodin, V.N., Lincoln, D.M., Epstein, A.J., Phys. Rev. Lett. 100, 067201 (2008).Google Scholar
Desai, P., Shakya, P., Kreouzis, T., Gillin, W.P., Morley, N.A., Gibbs, M.R.J., Phys. Rev. B: Condens. Matter 75, 094423 (2007).Google Scholar
Wang, F.J., Bassler, H., Vardeny, Z.V., Phys. Rev. Lett. 101, 236805 (2008).Google Scholar
Janssen, P., Cox, M., Wouters, S.H.W., Kemerink, M., Wienk, M.M., Koopmans, B., Nat. Commun. 4, 2286 (2013).Google Scholar
Cox, M., Janssen, P., Zhu, F., Koopmans, B., Phys. Rev. B: Condens. Matter 88, 035202 (2013).Google Scholar
Nicolai, H.T., Kuik, M., Wetzelaer, G.A.H., de Boer, B., Campbell, C., Risko, C., Brédas, J.L., Blom, P.W.M., Nat. Mater. 11, 882 (2012).Google Scholar
Rybicki, J., Lin, R., Wang, F., Wohlgenannt, M., He, C., Sanders, T., Suzuki, Y., Phys. Rev. Lett. 109, 076603 (2012).CrossRefGoogle Scholar
Cox, M., van der Heijden, E.H.M., Janssen, P., Koopmans, B., Phys. Rev. B: Condens. Matter 89, 085201 (2014).Google Scholar
Mahato, R.N., Lülf, H., Siekman, M.H., Kersten, S.P., Bobbert, P.A., de Jong, M.P., De Cola, L., van der Wiel, W.G., Science 341, 257 (2013).Google Scholar
Lee, S.K., Zu, Y., Herrmann, A., Geerts, Y., Müllen, K., Bard, A.J., J. Am. Chem. Soc. 121, 3513 (1999).CrossRefGoogle Scholar
Kersten, S.P., Meskers, S.C.J., Bobbert, P.A., Phys. Rev. B: Condens. Matter 86, 045210 (2012).Google Scholar
Wang, F., Macia, F., Wohlgenannt, M., Kent, A.D., Flatté, M.E., Phys. Rev. X 2, 021013 (2012).Google Scholar
Harmon, N.J., Macià, F., Wang, F., Wohlgenannt, M., Kent, A.D., Flatté, M.E., Phys. Rev. B: Condens. Matter 87, 121203 (2013).CrossRefGoogle Scholar
Macià, F., Wang, F., Harmon, N.J., Kent, A.D., Wohlgenannt, M., Flatté, M.E., Nat. Commun. 5, 3609 (2014).Google Scholar