Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T05:19:33.509Z Has data issue: false hasContentIssue false

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective

Published online by Cambridge University Press:  14 January 2013

Veaceslav Coropceanu
Affiliation:
Georgia Institute of Technology; [email protected]
Yuan Li
Affiliation:
Georgia Institute of Technology; [email protected]
Yuanping Yi
Affiliation:
Georgia Institute of Technology; [email protected]
Lingyun Zhu
Affiliation:
Georgia Institute of Technology; [email protected]
Jean-Luc Brédas
Affiliation:
Georgia Institute of Technology; [email protected]
Get access

Abstract

The aim of this article is to briefly review the progress made over the past few years in the theoretical description of the intrinsic charge-transport properties of organic molecular crystals. We first discuss the state-of-the-art methodologies used in the derivation of the electronic coupling and electron-phonon coupling constants. We illustrate the application of these techniques to two classes of semiconductors of interest for crystal-based organic electronics: crystals consisting of a single molecular building block, such as oligoacenes and their derivatives, and bimolecular crystals consisting of donor and acceptor compounds. After a brief overview of recent developments in the polaron modeling of the electronic and electrical properties of these systems, we examine the impact that the interplay between electronic interactions and various electron-phonon mechanisms has on the temperature dependence of the charge-carrier mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.L., Chem. Rev. 107, 926 (2007).Google Scholar
Bässler, H., Köhler, A., Top. Curr. Chem. 312, 1 (2012).Google Scholar
Grozema, F.C., Siebbeles, L.D.A., Int. Rev. Phys. Chem. 27, 87 (2008).Google Scholar
Shuai, Z.G., Wang, L.J., Li, Q.K., Adv. Mater. 23, 1145 (2011).Google Scholar
Troisi, A., Adv. Polym. Sci. 223, 259 (2010).Google Scholar
Anthony, J.E., Angew. Chem. Int. Ed. 47, 452 (2008).Google Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).Google Scholar
Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., Ogawa, S., Appl. Phys. Lett. 90, 102120 (2007).CrossRefGoogle Scholar
Jurchescu, O.D., Baas, J., Palstra, T.T.M., Appl. Phys. Lett. 84, 3061 (2004).Google Scholar
Horiuchi, S., Hasegawa, T., Tokura, Y., J. Phys. Soc. Jpn. 75, 051016 (2006).Google Scholar
Hasegawa, T., Takeya, J., Sci. Technol. Adv. Mater. 10, 024314 (2009).CrossRefGoogle Scholar
Zhu, L.Y., Yi, Y.P., Li, Y., Kim, E.G., Coropceanu, V., Brédas, J.L., J. Am. Chem. Soc. 134, 2340 (2012).Google Scholar
Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.-A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D., Adv. Mater. 24, 2603 (2012).Google Scholar
Hasegawa, T., Mattenberger, K., Takeya, J., Batlogg, B., Phys. Rev. B 69, 245115 (2004).Google Scholar
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., Brédas, J.L., J. Am. Chem. Soc. 128, 9882 (2006).Google Scholar
Coropceanu, V., Sánchez-Carrera, R.S., Paramonov, P., Day, G.M., Brédas, J.L., J. Phys. Chem. C 113, 4679 (2009).CrossRefGoogle Scholar
Girlando, A., Grisanti, L., Masino, M., Bilotti, I., Brillante, A., Della Valle, R.G., Venuti, E., Phys. Rev. B 82, 035208 (2010).Google Scholar
Martinelli, N.G., Idé, J., Sánchez-Carrera, R.S., Coropceanu, V., Brédas, J.L., Ducasse, L., Castet, F., Cornil, J., Beljonne, D., J. Phys. Chem. C 113, 20678 (2010).Google Scholar
Sánchez-Carrera, R.S., Paramonov, P., Day, G.M., Coropceanu, V., Brédas, J.L., J. Am. Chem. Soc. 132, 14437 (2010).Google Scholar
Li, Y., Yi, Y.P., Coropceanu, V., Brédas, J.L., Phys. Rev. B 85, 245201 (2012).Google Scholar
Ciuchi, S., Fratini, S., Phys. Rev. Lett. 106, 166403 (2011).Google Scholar
Perroni, C.A., Marigliano Ramaglia, V., Cataudella, V., Phys. Rev. B 84, 014303 (2011).Google Scholar
Cataudella, V., De, G. Filippis, Perroni, C.A., Phys. Rev. B 83, 165203 (2011).CrossRefGoogle Scholar
Fratini, S., Ciuchi, S., Phys. Rev. Lett. 103, 266601 (2009).Google Scholar
Troisi, A., Orlandi, G., Phys. Rev. Lett. 96, 086601 (2006).CrossRefGoogle Scholar
Pope, M., Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).Google Scholar
Silinsh, E., Cápek, V., Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (American Institute of Physics, New York, 1994).Google Scholar
Norton, J.E., Brédas, J.L., J. Am. Chem. Soc. 130, 12377 (2008).Google Scholar
Holstein, T., Ann. Phys. (N.Y.) 8, 325 (1959).CrossRefGoogle Scholar
Holstein, T., Ann. Phys. (N.Y.) 8, 343 (1959).Google Scholar
Peierls, R.E., Quantum Theory of Solids (Clarendon Press, Oxford, 1955).Google Scholar
Berlin, Y.A., Grozema, F.C., Siebbeles, L.D.A., Ratner, M.A., J. Phys. Chem. C 112, 10988 (2008).CrossRefGoogle Scholar
Balabin, I.A., Onuchic, J.N., Science 290, 114 (2000).Google Scholar
May, V., Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems, 3rd rev. (Wiley-VCH, Weinheim, 2011).Google Scholar
Newton, M.D., Chem. Rev. 91, 767 (1991).Google Scholar
Jortner, J., Bixon, M., Eds., Electron Transfer─From Isolated Molecules to Biomolecules (Wiley, New York, 1999).Google Scholar
Hsu, C.P., Acc. Chem. Res. 42, 509 (2009).Google Scholar
Kaduk, B., Kowalczyk, T., Van Voorhis, T., Chem. Rev. 112, 321 (2012).CrossRefGoogle Scholar
Koopmans, T., Physica 1, 104 (1934).Google Scholar
Senthilkumar, K., Grozema, F.C., Bickelhaupt, F.M., Siebbeles, L.D.A., J. Chem. Phys. 119, 9809 (2003).Google Scholar
Li, Y., Coropceanu, V., Brédas, J.L., J. Phys. Chem. Lett. 3, 3325 (2012).Google Scholar
Kakuta, H., Hirahara, T., Matsuda, I., Nagao, T., Hasegawa, S., Ueno, N., Sakamoto, K., Phys. Rev. Lett. 98, 247601 (2007).CrossRefGoogle Scholar
Marcus, R.A., Rev. Mod. Phys. 65, 599 (1993).Google Scholar
Barbara, P.F., Meyer, T.J., Ratner, M.A., J. Phys. Chem. 100, 13148 (1996).Google Scholar
Coropceanu, V., Malagoli, M., da Silva Filho, D.A., Gruhn, N.E., Bill, T.G., Brédas, J.L., Phys. Rev. Lett. 89, 275503 (2002).CrossRefGoogle Scholar
Brovchenko, I.V., Chem. Phys. Lett. 278, 355 (1997).Google Scholar
McMahon, D.P., Troisi, A., J. Phys. Chem. Lett. 1, 941 (2010).CrossRefGoogle Scholar
Su, W.P., Schrieffer, J.R., Heeger, A.J., Phys. Rev. Lett. 42, 1698 (1979).Google Scholar
Hannewald, K., Stojanović, V.M., Schellekens, J.M.T., Bobbert, P.A., Kresse, G., Hafner, J., Phys. Rev. B 69, 075211 (2004).Google Scholar
Wang, L.J., Peng, Q., Li, Q.K., Shuai, Z., J. Chem. Phys. 127, 044506 (2007).Google Scholar
Girlando, A., Masino, M., Bilotti, I., Brillante, A., Della Valle, R.G., Venuti, E., Phys. Chem. Chem. Phys. 14, 1694 (2012).CrossRefGoogle Scholar
Yi, Y., Coropceanu, V., Brédas, J.L., J. Chem. Phys. 137, 164303 (2012).Google Scholar
Troisi, A., Orlandi, G., J. Phys. Chem. A 110, 4065 (2006).Google Scholar
Munn, R.W., Silbey, R., J. Chem. Phys. 83, 1843 (1985).Google Scholar
Munn, R.W., Silbey, R., J. Chem. Phys. 83, 1854 (1985).Google Scholar
Ortmann, F., Bechstedt, F., Hannewald, K., Phys. Rev. B 79, 235206 (2009).Google Scholar
Chen, D.M., Ye, J., Zhang, H.J., Zhao, Y., J. Phys. Chem. B 115, 5312 (2011).Google Scholar
Mahan, G.D., Many-Particle Physics, 2nd ed. (Plenum, New York, 1990).Google Scholar
Wang, D., Chen, L.P., Zheng, R.H., Wang, L.J., Shi, Q., J. Chem. Phys. 132, 081101 (2010).Google Scholar
Bohlin, J., Linares, M., Stafstrom, S., Phys. Rev. B 83, 085209 (2011).Google Scholar
Zhong, X.X., Zhao, Y., J. Chem. Phys. 135, 134110 (2011).Google Scholar
Zhao, Y., Brown, D.W., Lindenberg, K., J. Chem. Phys. 100, 2335 (1994).Google Scholar