Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T14:30:01.606Z Has data issue: false hasContentIssue false

Inside out—Visualizing dynamic chemical transformations in situ with nanometer-scale resolution

Published online by Cambridge University Press:  10 October 2017

Jennifer A. Dionne*
Affiliation:
Stanford University, USA; [email protected]
Get access

Abstract

In Pixar’s Inside Out, the character Joy proclaims, “Do you ever look at someone and wonder what’s going on inside?” Driven by similar curiosity, the scientific community has developed remarkable in situ characterization tools to visualize the inner workings of complex, dynamic systems, elucidating their functions and enabling next-generation technologies. This article describes our research developing plasmonic techniques to visualize dynamic chemical transformations in situ with nanometer-scale resolution. As a model system, we investigated the hydrogenation and dehydrogenation of palladium nanocrystals. Using environmental electron microscopy and spectroscopy, we monitored this reaction with sub-2-nm spatial resolution and millisecond time resolution. Particles of different sizes, shapes, and crystallinities exhibit distinct thermodynamic and kinetic properties, highlighting several important design principles for next-generation catalysts and energy-storage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalwijk, W., Nat. Mater. 4, 366 (2005).CrossRefGoogle Scholar
Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F., Nat. Mater. 7, 665 (2008).Google Scholar
Ebner, M., Marone, F., Stampanoni, M., Wood, V., Science 342, 716 (2013).Google Scholar
Meethong, N., Huang, H.Y.S., Speakman, S.A., Carter, W.C., Chiang, Y.M., Adv. Funct. Mater. 17, 1115 (2007).Google Scholar
Bruce, P.G., Scrosati, B., Tarascon, J.-M., Angew. Chem. Int. Ed. 47, 2930 (2008).Google Scholar
Chueh, W.C., Gabaly, F.E., Sugar, J.D., Bartelt, N.C., McDaniel, A.H., Fenton, K.R., Zavadil, K.R., Tyliszczak, T., Lai, W., McCarty, K.F., Nano Lett. 13, 866 (2013).Google Scholar
Haile, S., Acta Mater. 51, 5981 (2003).Google Scholar
Pundt, A., Adv. Eng. Mater. 6, 11 (2004).Google Scholar
Bérubé, V., Radtke, G., Dresselhaus, M., Chen, G., Int. J. Energy Res. 31, 637 (2007).Google Scholar
Bardhan, R., Hedges, L., Pint, C., Javey, A., Whitelam, S., Urban, J., Nat. Mater. 12, 905 (2013).Google Scholar
Meunier, V., Kalinin, S., Sumpter, B., Phys. Rev. Lett. 98, 056401 (2007).Google Scholar
Ohno, T., Nat. Mater. 10, 591 (2011).Google Scholar
Flanagan, T., Oates, W.A., Annu. Rev. Mater. Sci. 21, 269 (1991).Google Scholar
Graham, T., Philos. Trans. R. Soc. London 156, 399 (1866).Google Scholar
Sachs, C., Pundt, A., Kirchheim, R., Winter, M., Reetz, M.T., Fritsch, D., Phys. Rev. B 64, 075408 (2001).Google Scholar
Pundt, A., Kirchheim, R., Annu. Rev. Mater. Res. 36, 555 (2006).Google Scholar
Yamauchi, M., Ikeda, R., Kitagawa, H., Takata, M., J. Phys. Chem. C 112, 3294 (2008).Google Scholar
Liu, N., Nat. Mater. 10, 631 (2011).Google Scholar
Tang, M.L., Liu, N., Dionne, J.A., Alivisatos, A.P., J. Am. Chem. Soc. 133, 13220 (2011).Google Scholar
Shegai, T., Langhammer, C., Adv. Mater. 23, 4409 (2011).Google Scholar
Tittl, A., Kremers, C., Dorfmüller, J., Chigrin, D.N., Giessen, H., Opt. Mater. Express 2, 111 (2012).Google Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B., Zandbergen, H., Ultramicroscopy 112, 47 (2012).Google Scholar
Syrenova, S., Wadell, C., Nugroho, F.A.A., Gschneidtner, T.A., Fernandez, Y., Nalin, G., Świtlik, D., Westerlund, F., Antosiewicz, T.J., Zhdanov, V.P., Moth-Poulsen, K., Langhammer, C., Nat. Mater. 14, 1326 (2015).Google Scholar
Baldi, A., Narayan, T.C., Koh, A.L., Dionne, J.A., Nat. Mater. 13, 1143 (2014).CrossRefGoogle Scholar
Griessen, R., Strohfeldt, N., Giessen, H., Nat. Mater. 15, 311 (2016).Google Scholar
Ulvestad, A., Welland, M.J., Collins, S.S.E., Harder, R., Maxey, E., Wingert, J., Singer, A., Hy, S., Mulvaney, P., Zapol, P., Shpyrko, O.G., Nat. Commun. 6, 1 (2015).Google Scholar
Niu, W., Zhang, L., Xu, G., Cryst. Growth Des. 8, 4440 (2008).Google Scholar
Niu, W., Zhang, L., Xu, G., ACS Nano 4, 1987 (2010).Google Scholar
Bisson, L., Boissiere, C., Nicole, L., Grosso, D., Jolivet, J.P., Thomazeau, C., Uzio, D., Berhault, G., Sanchez, C., Chem. Mater. 21, 2668 (2009).Google Scholar
Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J., Xia, Y., J. Am. Chem. Soc. 129 (12), 3665 (2007).Google Scholar
García de Abajo, F.J., Rev. Mod. Phys. 82, 209 (2010).Google Scholar
Yamada, Y., Tajima, K., Bao, S., Okada, M., Roos, A., Yoshimura, K., J. Appl. Phys. 106, 013523 (2009).Google Scholar
Gremaud, R., Gonzalez-Silveira, M., Pivak, Y., de Man, S., Slaman, M., Schreuders, H., Dam, B., Griessen, R., Acta Mater. 57, 1209 (2009).Google Scholar
Narayan, T., Baldi, A., Koh, A.L., Sinclair, R., Dionne, J.A., Nat. Mater. 15, 768 (2016).Google Scholar
Narayan, T., Hayee, F., Baldi, A., Koh, A., Sinclair, R., Dionne, J., Nat. Commun. 8, 14020 (2017).Google Scholar
Manthiram, A., Murugan, A.V., Sarkar, A., Muraliganth, T., Energy Environ. Sci. 1, 621 (2008).Google Scholar
Li, Y., Cui, F., Ross, M.B., Kim, D., Sun, Y., Yang, P., Nano Lett. 17, 1312 (2017).Google Scholar
Ertekin, E., Greaney, P.A., Chrzan, D.C., Sands, T.D., J. Appl. Phys. 97, 114325 (2005).CrossRefGoogle Scholar
Hayee, F., Narayan, T., Baldi, A., Koh, A.L., Sinclair, R., Dionne, J., (forthcoming).Google Scholar
Zhang, X., Chen, Y.L., Liu, R.-S., Tsai, D.P., Rep. Prog. Phys. 76, 46401 (2013).Google Scholar
Linic, S., Aslam, U., Boerigter, C., Morabito, M., Nat. Mater. 14, 567 (2015).Google Scholar
Baffou, G., Quidant, R., Chem. Soc. Rev. 43, 3898 (2014).Google Scholar
Swearer, D., Zhao, H., Zhou, L., Zhang, C., Robatjazi, H., Martirez, J.M.P., Krauter, C.M., Yazdi, S., McClain, M., Ringe, E., Carter, E., Nordlander, P., Halas, N.J., Proc. Natl. Acad. Sci. U.S.A. 113, 8916 (2016).CrossRefGoogle Scholar
Vadai, M., Hayee, F., Sytwu, K., Angell, D., Dionne, J.A., (forthcoming).Google Scholar