Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:10:44.988Z Has data issue: false hasContentIssue false

In-Contact Molecular Spectroscopy of Liquid Lubricant Films

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The primary role of a lubricant is to control the friction and wear of rubbing surfaces to optimize the operation of a component by forming an interfacial film separating the surfaces. Lubrication research seeks to develop new lubricant formulations and to optimize component life and performance. To do this, we must understand the mechanisms of film formation and film properties and the way these relate to operating conditions. In many engineering components, the lubricant film is subjected to severe mechanical and thermal stresses as it passes through the loaded zone. These severe conditions can result in molecular alignment or conformational change and the formation of new chemical species, which will impact the lubrication performance of the fluid. The lubricant response within the contact is often transient and thus has proved difficult to study by conventional surface analytical methods. One alternative is to replace one of the surfaces by a transparent window and use molecular microspectroscopy (infrared or Raman) to analyze the film within the contact zone formed during rubbing. This article reviews the development and application of in-contact molecular spectroscopy for the study of lubricant properties within the rubbing interface for both conventional and biolubrication systems. This technique has been used to study molecular conformation, chemical composition, and pressure distribution in the high-pressure region of the contact zone. However, challenges remain, including detecting very thin films, obtaining depth profile information, and applying these methods more generally to biotribology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gohar, R., Cameron, A., ASLE Trans. 10, 215 (1967).CrossRefGoogle Scholar
2.Ausherman, V.K., Nagaraj, H.S., Sanborn, D.M., Winer, W.O., ASME Trans. J. Lubr. Technol. 98, 236 (1976).CrossRefGoogle Scholar
3.Bokobza, L., Buffeteau, T., Desbat, B., Appl. Spectrosc. 54, 360 (2000).CrossRefGoogle Scholar
4.Wong, P.T.T., Chagwedera, T.E., Mantsch, H.H., J. Chem. Phys., 87, 4487 (1987).CrossRefGoogle Scholar
5.Schoen, P.E., Priest, R.G., Sheridan, J.P., Schnur, J.M., J. Chem. Phys., 71, 317 (1979).CrossRefGoogle Scholar
6.Masuko, M., Toda, Y., Suzuki, A., Proc. Int. Tribol. Conf. Nagasaki (JST, Tokyo, 2000), p. 493.Google Scholar
7.Cann, P.M., Doner, J.P., Webster, M.N., Wikstrom, V., Tribol. Trans. 44, 399 (2001).CrossRefGoogle Scholar
8.Greenler, R.G., J. Chem. Phys. 44, 310, (1966).CrossRefGoogle Scholar
9.Francis, S.A., Ellison, A.H., J. Chem. Eng. Data 16, 83 (1961).CrossRefGoogle Scholar
10.Harrick, N.J., Internal Reflection Spectroscopy (Wiley, New York, 1967).Google Scholar
11.Lauer, J.L., Peterkin, M.E., ASME Trans. J. Lubr. Technol. 98, 230 (1976).CrossRefGoogle Scholar
12.Lauer, J.L., Peterkin, M.E., ASLE Trans. 21, 250 (1978).CrossRefGoogle Scholar
13.Lauer, J.L., ASME Trans. J. Lubr. Technol. 101, 67 (1979).CrossRefGoogle Scholar
14.King, V.W., Lauer, J.L., ASME Trans. J. Lubr. Technol. 103, 65 (1981).CrossRefGoogle Scholar
15.Lauer, J.L., Keller, L.E., Choi, F.H., King, V.W., ASLE Trans. 25, 329 (1982).CrossRefGoogle Scholar
16.Lauer, J.L., Ahn, Y.-J., STLE Tribol. Trans. 31, 120 (1987).CrossRefGoogle Scholar
17.Cann, P.M., Spikes, H.A., STLE Tribol. Trans. 34, 248 (1991).CrossRefGoogle Scholar
18.Piras, F.M., Rossi, A., Spencer, N.D., Langmuir 18 (2002).Google Scholar
19.Gardiner, D.J., Baird, E., Gorvin, A.C., Marshall, W.E., Dare-Edwards, M.P., Wear 91, 111 (1983).CrossRefGoogle Scholar
20.Gardiner, D.J., Baird, E., Craggs, C., Dare-Edwards, M.P., Bell, J.C., Lubr. Sci. 1, 301 (1989).CrossRefGoogle Scholar
21.Hutchinson, E.J., Shu, D., Laplant, F., Ben-Amotz, D., Appl. Spectrosc. 49, 1275 (1995).CrossRefGoogle Scholar
22.Laplant, F., Hutchinson, E.J., Ben-Amotz, D., J. Tribol. 119, 817 (1997).CrossRefGoogle Scholar
23.Mansot, J.L., Martin, J.-M., Proc. 12th Leeds–Lyon Symp. Tribol. 85 (1985).Google Scholar
24.Jubault, I., Mansot, J.L., Vergne, P., Mazuyer, D., J. Tribol. 124, 114 (2002).CrossRefGoogle Scholar
25.Coulon, S., Jubault, I., Lubrecht, A.A., Ville, F., Vergne, P., Tribol. Int. 37, 111 (2004).CrossRefGoogle Scholar
26.Cann, P.M., Spikes, H.A., Lubr. Eng. 48, 335 (1992).Google Scholar
27.Hurley, S., Cann, P.M., Proc. 25th Leeds–Lyon Symp. Tribol. 589 (1999).Google Scholar
28.Hurley, S., Cann, P.M., Spikes, H.A., Tribol. Trans. 43, 9 (2000).CrossRefGoogle Scholar
29.Hurley, S., Cann, P.M., NLGI Spokesman 67, 26 (2003).Google Scholar
30.Hurley, S., PhD Thesis, University of London (2000).Google Scholar
31.Tanaka, S., Nakahara, T., Kyogoku, K., Proc. Int. Tribol. Conf. Nagasaki (JST, Tokyo, 2000), p. 1395.Google Scholar
32.Shitara, Y., Yasutomi, S., Hoshi, Y., Mori, S., Proc. Int. Tribol. Conf. Nagasaki (JST, Tokyo, 2000), p. 667.Google Scholar
33.Wardle, R.W., Cann, P.M., Spikes, H.A., Lubr. Sci. 3, 45 (1990).CrossRefGoogle Scholar
34.Cann, P.M., Spikes, H.A., Tribol. Lett. 19, 280 (2005).CrossRefGoogle Scholar
35.Beattie, D.A., Wingnet, S.A., Bain, C.D., Tribol. Lett. 27, 159 (2007).CrossRefGoogle Scholar
36.Ventataraman, N.V., Vasudevan, S., J. Phys. Chem. B 106, 7766 (2002).CrossRefGoogle Scholar
37.Gluschove-Corby, D., The Application of Raman Spectroscopy to Lubricated Rolling Contacts, PhD Thesis, University of London (2002).Google Scholar
38.Hills, B.A., Proc. Inst. Mech. Eng. H 214, 83 (2000).CrossRefGoogle Scholar
39.Murakami, T., Sawae, Y., Nakashima, K., Yarimitsu, S., Sato, T., Proc. Inst. Mech. Eng. J 221, 237 (2007).CrossRefGoogle Scholar
40.Wang, L., Cruz, A., Flach, C.R., Pérez-Gil, J., Mendelsohn, R., Langmuir 23, 4950 (2007).CrossRefGoogle ScholarPubMed
41.Jakobsen, R.J., Wasacz, F.M., Appl. Spectrosc. 44, 1478 (1990).CrossRefGoogle Scholar
42.Ahern, A.M., Garell, R.L., Langmuir 7, 254 (1991).CrossRefGoogle Scholar
43.Mulcahy, M.E., Berets, S.L., Milosevic, M., Michl, J., J. Phys. Chem. B 108, 1519 (2004).CrossRefGoogle Scholar