Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:38:29.908Z Has data issue: false hasContentIssue false

In situ mapping of chemical segregation using synchrotron x-ray imaging

Published online by Cambridge University Press:  10 November 2020

Shikang Feng
Affiliation:
Department of Materials, University of Oxford, UK; [email protected]
Enzo Liotti
Affiliation:
Department of Materials, University of Oxford, UK; [email protected]
Matthew D. Wilson
Affiliation:
Detector Development Group, Rutherford Appleton Laboratory, UK; [email protected]
Lydia Jowitt
Affiliation:
Detector Development Group, Rutherford Appleton Laboratory, UK; [email protected]
Patrick S. Grant
Affiliation:
University of Oxford, UK; [email protected]
Get access

Abstract

Synchrotron x-rays are a powerful tool to probe real-time changes in the microstructure of materials as they respond to an external stimulus, such as phase transformations that take place in response to a change in temperature. X-ray imaging techniques include radiography and tomography, and have been steadily improved over the last decades so that they can now resolve micrometer-scale or even finer structural changes in bulk specimens over time scales of a second or less. Under certain conditions, these imaging approaches can also give spatially resolved chemical information. In this article, we focus on the liquid to solid transformation of metallic alloys and the temporal and spatial resolution of the accompanying segregation of alloying elements. The solidification of alloys provides an excellent case study for x-ray imaging because it is usually accompanied by the progressive, preferential segregation of one or more of the alloying elements to either the solid or the liquid, and gives rise to surprisingly complex chemical segregation patterns. We describe chemical mapping investigations of binary and quasi-binary alloys using radiography and tomography, and recent developments in x-ray fluorescence imaging that offer the prospect of a more general, multielement mapping technique. Future developments for synchrotron-based chemical mapping are also considered.

Type
Processing Metallic Materials Far from Equilibrium
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reddy, A.V., Beckermann, N.C., Metall. Mater. Trans. B 28, 479 (1997).10.1007/s11663-997-0115-2CrossRefGoogle Scholar
Mirihanage, W.U., Falch, K.V., Snigireva, I., Snigirev, A., Li, Y.J., Arnberg, L., Mathiesen, R.H., Acta Mater. 81, 241 (2014).10.1016/j.actamat.2014.08.016CrossRefGoogle Scholar
Liotti, E., Lui, A., Vincent, R., Kumar, S., Guo, Z., Connolley, T., Dolbnya, I.P., Hart, M., Arnberg, L., Mathiesen, R.H., Grant, P.S., Acta Mater. 70, 228 (2014).10.1016/j.actamat.2014.02.024CrossRefGoogle Scholar
Mathiesen, R.H., Arnberg, L., Nguyen-Thi, H., Billia, B., JOM 64, 76 (2012).10.1007/s11837-011-0213-0CrossRefGoogle Scholar
Mokso, R., Schlepütz, C.M., Theidel, G., Billich, H., Schmid, E., Celcer, T., Mikuljan, G., Sala, L., Marone, F., Schlumpf, N., Stampanoni, M., J. Synchrotron Radiat. 24, 1250 (2017).10.1107/S1600577517013522CrossRefGoogle Scholar
Kameshima, T., Takeuchi, A., Uesugi, K., Kudo, T., Kohmura, Y., Tamasaku, K., Muramatsu, K., Yanagitani, T., Yabashi, M., Hatsui, T., Opt. Lett. 44, 1403 (2019).10.1364/OL.44.001403CrossRefGoogle Scholar
Sun, T., Tan, W., Chen, L., Rollett, A.D., MRS Bull. 45 (11), 927 (2020).10.1557/mrs.2019.290CrossRefGoogle Scholar
McKeown, J.T., Clarke, A.J., Wiezorek, J.M.K., MRS Bull. 45 (11), 916 (2020).Google Scholar
Als-Nielsen, J., McMorrow, D., Elements of Modern X-ray Physics (Wiley, UK, 2011).10.1002/9781119998365CrossRefGoogle Scholar
Barkan, S., Saveliev, V.D., Wang, Y., Feng, L., Damron, E.V., Tomimatsu, Y., Biol. Chem. Res. 2015, 338 (2015).Google Scholar
Tartoni, N., Crook, R., Krings, T., Protić, D., Ross, C., Bombelli, L., Alberti, R., Frizzi, T., Astromskas, V., IEEE Trans. Nucl. Sci. 62, 387 (2015).10.1109/TNS.2014.2381492CrossRefGoogle Scholar
Vanhoof, C., Bacon, J.R., Ellis, A.T., Fittschen, U.E.A., Vincze, L., J. Anal. At. Spectrom. 34, 1750 (2019).10.1039/C9JA90042JCrossRefGoogle Scholar
Ryan, C.G., Siddons, D.P., Kirkham, R., Li, Z.Y., de Jonge, M.D., Paterson, D.J., Kuczewski, A., Howard, D.L., Dunn, P.A., Falkenberg, G., Boesenberg, U., De Geronimo, G., Fisher, L.A., Halfpenny, A., Lintern, M.J., Lombi, E., Dyl, K.A., Jensen, M., Moorhead, G.F., Cleverley, J.S., Hough, R.M., Godel, B., Barnes, S.J., James, S.A., Spiers, K.M., Alfeld, M., Wellenreuther, G., Vukmanovic, Z., Borg, S., J. Phys. Conf. Ser. 499, 012002 (2014).10.1088/1742-6596/499/1/012002CrossRefGoogle Scholar
Buffet, A., Thi, H.N., Bogno, A., Schenk, T., Mangelinck-Noel, N., Reinhart, G., Bergeon, N., Billia, B., Baruchel, J., Mater. Sci. Forum 649, 331 (2010).10.4028/www.scientific.net/MSF.649.331CrossRefGoogle Scholar
Billia, B., Nguyen-Thi, H., Mangelinck-Noel, N., Bergeon, N., Jung, H., Reinhart, G., Bogno, A., Buffet, A., Hartwig, J., Baruchel, J., Schenk, T., ISIJ Int. 50, 1929 (2010).10.2355/isijinternational.50.1929CrossRefGoogle Scholar
Bogno, A., Nguyen-Thi, H., Buffet, A., Reinhart, G., Billia, B., Mangelinck-Noël, N., Bergeon, N., Baruchel, J., Schenk, T., Acta Mater. 59, 4356 (2011).10.1016/j.actamat.2011.03.059CrossRefGoogle Scholar
Schenk, T., Nguyen Thi, H., Gastaldi, J., Reinhart, G., Cristiglio, V., Mangelinck-Noël, N., Klein, H., Härtwig, J., Grushko, B., Billia, B., Baruchel, J., J. Cryst. Growth 275, 201 (2005).10.1016/j.jcrysgro.2004.10.081CrossRefGoogle Scholar
Chen, Y., Nguyen-Thi, H., Li, D.Z., Bogno, A.-A., Billia, B., Xiao, N.M., IOP Conf. Ser. Mater. Sci. Eng. 33, 012102 (2012).10.1088/1757-899X/33/1/012102CrossRefGoogle Scholar
Mathiesen, R.H., Arnberg, L., Acta Mater. 53, 947 (2005).10.1016/j.actamat.2004.10.050CrossRefGoogle Scholar
Ruvalcaba, D., Mathiesen, R.H., Eskin, D.G., Arnberg, L., Katgerman, L., Acta Mater. 5513, 4287 (2007).10.1016/j.actamat.2007.03.030CrossRefGoogle Scholar
Mirihanage, W.U., Falch, K.V., Casari, D., McFadden, S., Browne, D.J., Snigireva, I., Snigirev, A., Li, Y.J., Mathiesen, R.H., Materialia 5, 100215 (2019).10.1016/j.mtla.2019.100215CrossRefGoogle Scholar
Liotti, E., Lui, A., Kumar, S., Guo, Z., Bi, C., Connolley, T., Grant, P.S., Acta Mater. 121, 384 (2016).10.1016/j.actamat.2016.09.013CrossRefGoogle Scholar
Mathiesen, R.H., Mater. Sci. Eng. A 413, 283 (2005).10.1016/j.msea.2005.08.160CrossRefGoogle Scholar
Mathiesen, R.H., Arnberg, L., Bleuet, P., Somogyi, A., Metall. Mater. Trans. A 37, 2515 (2006).10.1007/BF02586224CrossRefGoogle Scholar
Liotti, E., Arteta, C., Zisserman, A., Lui, A., Lempitsky, V., Grant, P.S., Sci. Adv. 4, eaar4004 (2018).10.1126/sciadv.aar4004CrossRefGoogle Scholar
Jia, Y., Huang, H., Fu, Y., Zhu, G., Shu, D., Sun, B., StJohn, D.H., Scr. Mater. 167, 6 (2019).10.1016/j.scriptamat.2019.03.032CrossRefGoogle Scholar
Bogno, A., Nguyen-Thi, H., Reinhart, G., Billia, B., Baruchel, J., Acta Mater. 61, 1303 (2013).10.1016/j.actamat.2012.11.008CrossRefGoogle Scholar
Becker, M., Klein, S., Kargl, F., Scr. Mater. 124, 34 (2016).10.1016/j.scriptamat.2016.06.032CrossRefGoogle Scholar
Porter, D.A., Easterling, K.E., Sherif, M.Y., Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, FL, 2009).Google Scholar
Feng, S., Liotti, E., Lui, A., Wilson, M.D., Connolley, T., Mathiesen, R.H., Grant, P.S., Acta Mater. 196, 759 (2020).10.1016/j.actamat.2020.06.045CrossRefGoogle Scholar
Tiller, W., Jackson, K., Rutter, J., Chalmers, B., Acta Metall. 1, 428 (1953).10.1016/0001-6160(53)90126-6CrossRefGoogle Scholar
Wang, H., Cai, B., Pankhurst, M.J., Zhou, T., Kashyap, Y., Atwood, R., Le Gall, N., Lee, P., Drakopoulos, M., Sawhney, K., J. Synchrotron Radiat. 25, 1182 (2018).10.1107/S1600577518005623CrossRefGoogle Scholar
Nelson, T., Cai, B., Warnken, N., Lee, P.D., Boller, E., Magdysyuk, O.V., Green, N.R., Scr. Mater. 180, 29 (2020).10.1016/j.scriptamat.2019.12.026CrossRefGoogle Scholar
Kobayashi, Y., Dobara, K., Todoroki, H., Nam, C., Morishita, K., Yasuda, H., ISIJ Int. 60, 276 (2020).10.2355/isijinternational.ISIJINT-2019-444CrossRefGoogle Scholar
Liotti, E., Lui, A., Connolley, T., Dolbnya, I.P., Sawhney, K.J.S., Malandain, A., Wilson, M.D., Veale, M.C., Seller, P., Grant, P.S., Sci. Rep. 5, 6 (2015).10.1038/srep15988CrossRefGoogle Scholar
Veale, M.C., Seller, P., Wilson, M., Liotti, E., Synchrotron Radiat. News 31, 28 (2018).10.1080/08940886.2018.1528431CrossRefGoogle Scholar
Abt, F., Boley, M., Weber, R., Graf, T., Popko, G., Nau, S., Phys. Procedia 12, 761 (2011).10.1016/j.phpro.2011.03.095CrossRefGoogle Scholar
Yamada, T., Shobu, T., Nishimura, A., Yonemoto, Y., Yamashita, S., Muramatsu, T., J. Laser Micro/Nanoeng. 7, 244 (2012).10.2961/jlmn.2012.03.0002CrossRefGoogle Scholar
Leung, C.L.A., Marussi, S., Atwood, R.C., Towrie, M., Withers, P.J., Lee, P.D., Nat. Commun. 9, 1355 (2018).10.1038/s41467-018-03734-7CrossRefGoogle Scholar
Leung, C.L.A., Marussi, S., Towrie, M., del Val Garcia, J., Atwood, R.C., Bodey, A.J., Jones, J.R., Withers, P.J., Lee, P.D., Addit. Manuf. 24, 647 (2018).Google Scholar
Aucott, L., Dong, H., Mirihanage, W., Atwood, R., Kidess, A., Gao, S., Wen, S., Marsden, J., Feng, S., Tong, M., Connolley, T., Drakopoulos, M., Kleijn, C.R., Richardson, I.M., Browne, D.J., Mathiesen, R.H., Atkinson, H.V., Nat. Commun. 9, 5414 (2018).10.1038/s41467-018-07900-9CrossRefGoogle Scholar
Advanced Photon Source, APS Upgrade Project Final Design Review Report—2019, (APSU-2.01-RPT-003, Advanced Photon Source, Lemont, IL, 2019).Google Scholar
Diamond Light Source, Diamond-II: Conceptual Design Report, Diamond Light Source Ltd., Oxfordshire, UK, 2019.Google Scholar
Kirkwood, H.J., de Jonge, M.D., Muránsky, O., Hofmann, F., Howard, D.L., Ryan, C.G., van Riessen, G., Rowles, M.R., Paradowska, A.M., Abbey, B., Acta Mater. 144, 1 (2018).10.1016/j.actamat.2017.10.025CrossRefGoogle Scholar
Wilson, M.D., Dummott, L., Duarte, D.D., Green, F.H., Pani, S., Schneider, A., Scuffham, J.W., Seller, P., Veale, M.C., J. Instrum. 10, P10011 (2015).10.1088/1748-0221/10/10/P10011CrossRefGoogle Scholar