Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T19:58:47.207Z Has data issue: false hasContentIssue false

In Situ EXAFS Characterization of Nanoparticulate Catalysts

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

X-ray absorption fine structure (XAFS) spectroscopy probes the structure and electronic properties of metal centers. Because it can be applied to noncrystalline materials, it is a key technique for probing nanoparticulate materials, such as colloidal and heterogeneous metal catalysts. The high brilliance of modern synchrotron radiation x-ray sources facilitates in situ studies, which provide direct structure–function relationships with both spatial and time resolution; this is especially effective when applied in combination with complementary techniques such as x-ray diffraction, mass spectrometry, and optical or vibrational spectroscopies. Tracking the particle formation of platinum-group metal catalysts, their behavior under reaction conditions, and the distribution of sites within a catalyst bed shows that this approach is essential for understanding the chemistry of these nanoparticles. Rather than behave as monolithic entities, nanoparticulate catalysts undergo rapid structural transformations induced by the gas environment and reaction conditions, and their lifetimes as catalysts depend on the reversibility of these changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.D.C., Koningsberger, R., Prins, Eds., X-ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley Interscience, New York, 1988).Google Scholar
2.Brinkgreve, P., Koningsberger, D.C., Patent Application NL8300927 (1983).Google Scholar
3.Ravet, M.F., Krill, G., Rev. Sci. Instrum. 54, 227 (1983).Google Scholar
4.Williams, A., Rev. Sci. Instrum. 54, 193 (1983).Google Scholar
5.Yamashita, S., Taniguchi, K., Nomoto, S., Yamaguchi, T., Wakita, H., X-ray Spectrom. 21, 91 (1992).Google Scholar
6.Tromp, M., van Bokhoven, J.A., van Strijdonck, G.P.F., van Leeuwen, P.W.N.M., Koningsberger, D.C., Ramaker, D.E., J. Am. Chem. Soc. 127, 777 (2005).CrossRefGoogle Scholar
7.Wilke, M., Farges, F., Petit, P.E., Brown, G.E., Martin, F., Am. Mineral. 76, 714 (2001).Google Scholar
8.DeBeer, S., Randall, D.W., Nersissian, A.M., Valentine, J.S., Hedman, B., Hodgson, K.O., Solomon, E.I., J. Phys. Chem. B 104, 10814 (2001).Google Scholar
9.Wong, J., Lytle, F.W., Messmer, R.P., Maylotte, D.H., Phys. Rev. B 3, 5596 (1984).Google Scholar
10.Koningsberger, D.C., Mojet, B.L., van Dorssen, G.E., Ramaker, D.E., Top. Catal. 10, 143 (2000).Google Scholar
11.Newton, M.A., Dent, A.J., Evans, J., Chem. Soc. Rev. 31, 83 (2002).Google Scholar
12.Richwin, M., Zaeper, R., Lützenkirchen-Hecht, D., Frahm, R., J. Synchrotron. Radiat. 8, 354 (2001).Google Scholar
13.Frahm, R., Richwin, M., Lützenkirchen-Hecht, D., Physica Scripta T 115, 974 (2005).Google Scholar
14.Matsushita, T., Phizackerley, R.P., Jpn. J. Appl. Phys. 20, 2223 (1981).Google Scholar
15.Flank, A.M., Fontaine, A., Jucha, A., Lemonnier, M., Williams, C., J. Phys. Lett. 43, L315 (1982).Google Scholar
16.Dooryhee, E., Greaves, G.N., Steel, A.T., Townsend, R.P., Carr, S.W., Thomas, J.M., Catlow, C.R.A., Faraday Discuss. 89, 119 (1990).CrossRefGoogle Scholar
17.Couves, J.W., Thomas, J.M., Waller, D., Jones, R.H., Dent, A.J., Derbyshire, G.E., Greaves, G.N., Nature 354, 465 (1991).Google Scholar
18.Clausen, B.S., Topsøe, H., Frahm, R., Adv. Catal. 42, 315 (1998).Google Scholar
19.Evans, J., O'Neill, L., Kambhampati, V.L., Rayner, G., Turin, S., Genge, A., Dent, A.J., Neisius, T., J. Chem. Soc., Dalton Trans., 2207 (2002).CrossRefGoogle Scholar
20.Tromp, M., Sietsma, J.R.A., van Bokhoven, J.A., van Strijdonck, G.P.F., van Haaren, R.J., van der Eerden, A.M.J., van Leeuwen, P.W.N.M., Koningsberger, D.C., Chem. Commun., 128 (2003).Google Scholar
21.Briois, V., Lützenkirchen-Hecht, D., Villain, F., Fonda, E., Belin, S., Griesebock, B., Frahm, R., J. Phys. Chem. A 109, 320 (2005).Google Scholar
22.Beale, A.M., van der Eerden, A.M.J., Kervinen, K., Newton, M.A., Weckhuysen, B.M., Chem. Commun., 3015 (2005).CrossRefGoogle Scholar
23.Tinnemans, S.J., Mesu, J.G., Kervinen, K., Visser, T., Nijhuis, T.A., Beale, A.M., Keller, D.E., van der Eerden, A.M.J., Weckhuysen, B.M., Catal. Today 113, 3 (2006).Google Scholar
24.Oudenhuijzen, M.K., Kooyman, P.J., Tappel, B., van Bokhoven, J.A., Koningsberger, D.C., J. Catal. 205, 135 (2002).Google Scholar
25.Cimini, F., Prins, R., J. Phys. Chem. B 101, 5277 (1997).CrossRefGoogle Scholar
26.Keresszegi, C., Grunwaldt, J.D., Mallat, T., Baiker, A., J. Catal. 222, 268 (2004).Google Scholar
27.Russell, A.E., Rose, A., Chem. Rev. 104, 3 (2004).Google Scholar
28.Murthi, V.S., Urian, R.C., Mukerjee, S., J. Phys. Chem. B 108, 11011 (2004).Google Scholar
29.Teliska, M., O'Grady, W.E., Ramaker, D.E., J. Phys. Chem. B 109, 8076 (2005).Google Scholar
30.Clausen, B.S., Grabaek, L., Steffensen, G., Hansen, P.L., Topsøe, H., Catal. Lett. 20, 23 (1993).CrossRefGoogle Scholar
31.Grunwaldt, J.-D., Molenbroek, A.M., Topsøe, N.-Y., Topsøe, H., Clausen, B.S., J. Catal. 194, 452 (2000).Google Scholar
32.Grunwaldt, J.-D., Clausen, B.S., Top. Catal. 18, 37 (2002).Google Scholar
33.Grunwaldt, J.-D., Caravati, M., Baiker, A., J. Phys. Chem. B 110, 9916 (2006).Google Scholar
34.Grunwaldt, J.-D., Hannemann, S., Schroer, C.G., Baiker, A., J. Phys. Chem. B 110, 8674 (2006).Google Scholar
35.Yoshida, N., Matsushita, T., Saigo, S., Oyanagi, H., Hashimoto, H., Fujimoto, M., J. Chem. Soc., Chem. Commun., 354 (1990).Google Scholar
36. M.Rahman, B.B.A., Bolton, P.R., Evans, J., Dent, A.J., Harvey, I., Diaz-Moreno, S., Faraday Discuss. 122, 211 (2002).Google Scholar
37.Tromp, M., PhD thesis, Utrecht University, Utrecht, the Netherlands (2004).Google Scholar
38.Fiddy, S.G., Newton, M.A., Dent, A.J., Salvini, G., Corker, J.M., Turin, S., Campbell, T., Evans, J., Chem. Commun., 851 (1999).Google Scholar
39.Newton, M.A., Burnaby, D.G., Dent, A.J., Diaz-Moreno, S., Evans, J., Fiddy, S.G., Neisius, T., Pascarelli, S., Turin, S., J. Phys. Chem. A 105, 5965 (2001).Google Scholar
40.Newton, M.A., Burnaby, D.G., Dent, A.J., Diaz-Moreno, S., Evans, J., Fiddy, S.G., Neisius, T., Turin, S., J. Phys. Chem. B 106, 4214 (2002).Google Scholar
41.Newton, M.A., Dent, A.J., Diaz-Moreno, S., Fiddy, S.G., Evans, J., Angew. Chem., Int. Ed. 41, 2587 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
42.Newton, M.A., Dent, A.J., Diaz-Moreno, S., Fiddy, S.G., Jyoti, B., Evans, J., Chem. Eur. J. 12, 1975 (2006).CrossRefGoogle Scholar
43.Newton, M.A., Jyoti, B., Dent, A.J., Diaz-Moreno, S., Fiddy, S.G., Evans, J., Chem. Phys. Chem. 5, 1056 (2004).CrossRefGoogle Scholar
44.Sheppard, N., Nguyen, T.T., Adv. Infrared Raman Spectrosc. 5, 67 (1978).Google Scholar
45.Newton, M.A., Jyoti, B., Dent, A.J., Fiddy, S.G., Evans, J., Chem. Commun. 2382 (2004).Google Scholar
46.Dent, A.J., Evans, J., Fiddy, S.G., Jyoti, B., Newton, M.A., Tromp, M., Angew. Chem., Int. Ed. 46, 5356 (2007).Google Scholar
47.Hämäläinen, K., Kao, C.C., Hastings, J.B., Siddons, D.P., Berman, L.E., Stojanoff, V., Cramer, S.P., Phys. Rev. B 46, 14274 (1992).Google Scholar
48.Doonan, C.J., Zhang, L., Young, C.G., George, S.J., Deb, A., Bergman, U., George, G.N., Cramer, S.P., Inorg. Chem. 44, 2579 (2005).Google Scholar
49.Hämäläinen, K., Siddons, D.P., Hastings, J.B., Berman, L.E., Phys. Rev. Lett. 67, 2850 (1991).Google Scholar
50.de Groot, F.M.F., Krisch, M.H., Vogel, J., Phys. Rev. B 66, 195112 (2002).CrossRefGoogle Scholar
51.van Bokhoven, J.A., Louis, C., Miller, J.T., Tromp, M., Safonova, O.V., Glatzel, P., Angew. Chem., Int. Ed. 45, 4651 (2006).Google Scholar
52.Safonova, O., Tromp, M., van Bokhoven, J.A., de Groot, F.M.F., Evans, J., Glatzel, P., J. Phys. Chem. B 110, 16162 (2006).CrossRefGoogle Scholar
53.Glatzel, P., Bergmann, U., Coord. Chem. Rev. 249, 65 (2005) and references therein.Google Scholar
54.de Groot, F.M.F., Chem. Rev. 101, 1779 (2001) and references therein.Google Scholar
55.Evans, J., Phys. Chem. Chem. Phys. 8, 3045 (2006).CrossRefGoogle Scholar
56.Swart, I., Fielicke, A., Redlich, B., Meijer, G., Weckhuysen, B.M., de Groot, F.M.F., J. Am. Chem. Soc. 129, 2516 (2007).Google Scholar
57.Gawelda, W., Pham, V.T., Benfatto, M., Zaushitsyn, Y., Kaiser, M., Grolimund, D., Johnson, S.L., Abela, R., Hauser, A., Bressler, C., Chergui, M., Phys. Rev. Lett. 98, 057401 (2007).Google Scholar