Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T03:52:24.206Z Has data issue: false hasContentIssue false

Hydration layer structure at solid–water interfaces

Published online by Cambridge University Press:  12 December 2014

Paul Fenter
Affiliation:
Chemical Sciences and Engineering, Argonne National Laboratory, USA; [email protected]
Sang Soo Lee
Affiliation:
Chemical Sciences and Engineering, Argonne National Laboratory, USA; [email protected]
Get access

Abstract

The solid–water interface is ubiquitous in natural and synthetic systems as the primary site for chemical reactions under near-ambient conditions. Examples include the interactions of contaminants with mineral–water interfaces in natural environments, electrochemical reactions at the electrode-electrolyte interface relevant to energy storage (e.g., ion adsorption/electrical double layer formation, ion insertion), and oxidation of structural materials (e.g., rust). Yet many of these phenomena remain largely mysterious at a mechanistic level. The x-ray reflectivity technique, using highly penetrating hard x-rays, directly probes the solid–water interfaces through in situ studies. This approach has provided new insights into the molecular-scale structures and processes that occur at these “wet” interfaces. In this article, we review recent advances in the understanding of these systems, focusing specifically on the organization of interfacial “hydration layers” and the important role of adsorbed ions at charged solid–liquid interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lonsdale, K., Proc. R. Soc. Lond. A 247, 424 (1958).Google Scholar
Franks, F., Water: A Comprehensive Treatise (Plenum Publishing, New York, 1982), p. 484.Google Scholar
Symons, M.C.R., Nature 239, 257 (1972).Google Scholar
Xie, Y.L., Ludwig, K.F., Morales, G., Hare, D.E., Sorensen, C.M., Phys. Rev. Lett. 71, 2050 (1993).Google Scholar
Richens, D.T., The Chemistry of Aqua Ions (Wiley, Chichester, UK, 1997).Google Scholar
Zangwill, A., Physics at Surfaces (Cambridge University Press, Cambridge, UK, 1988).Google Scholar
Stumm, W., Chemistry of the Solid–Water Interface: Processes at the Mineral–Water and Particle–Water Interface in Natural Systems (Wiley, New York, 1992).Google Scholar
Gratz, A.J., Bird, P., Geochim. Cosmochim. Acta 57, 965 (1993).Google Scholar
Robinson, I.K., Tweet, D.J., Rep. Prog. Phys. 55, 599 (1992).Google Scholar
Fenter, P., Rev. Mineral. Geochem. 49, 149 (2002).Google Scholar
Doshi, D.A., Watkins, E.B., Israelachvili, J.N., Majewski, J., Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).Google Scholar
Schwendel, D., Hayashi, T., Dahint, R., Pertsin, A., Grunze, M., Steitz, R., Schreiber, F., Langmuir 19, 2284 (2003).Google Scholar
Du, Q., Freysz, E., Shen, Y.R., Science 264, 826 (1994).Google Scholar
Ostroverkhov, V., Waychunas, G.A., Shen, Y.R., Chem. Phys. Lett. 386, 144 (2004).Google Scholar
Wang, J., Ocko, B.M., Davenport, A.J., Isaacs, H.S., Phys. Rev. B: Condens. Matter 46, 10321 (1992).Google Scholar
Toney, M.F., Howard, J.N., Richer, J., Borges, G.L., Gordon, J.G., Melroy, O.R., Wiesler, D.G., Yee, D., Sorensen, L.B., Nature 368, 444 (1994).Google Scholar
Reedijk, M.F., Arsic, J., Hollander, F.F.A., de Vries, S.A., Vlieg, E., Phys. Rev. Lett. 90, 066103 (2003).Google Scholar
Arsic, J., Kaminski, D., Poodt, P., Vlieg, E., Phys. Rev. B. 69, 245406 (2004).Google Scholar
Eng, P.J., Trainor, T.P., Brown, G.E., Waychunas, G.A., Newville, M., Sutton, S.R., Rivers, M.L., Science 288, 1029 (2000).Google Scholar
Catalano, J.G., Geochim. Cosmochim. Acta 75, 2062 (2011).Google Scholar
Zhang, Z., Fenter, P., Cheng, L., Sturchio, N.C., Bedzyk, M.J., Predota, M., Bandura, A., Kubicki, J.D., Lvov, S.N., Cummings, P.T., Chialvo, A.A., Ridley, M.K., Benezeth, P., Anovitz, L., Palmer, D.A., Machesky, M.L., Wesolowski, D.J., Langmuir 20, 4954 (2004).Google Scholar
Zhang, Z., Fenter, P., Sturchio, N.C., Bedzyk, M.J., Machesky, M.L., Wesolowski, D.J., Surf. Sci. 601, 1129 (2007).Google Scholar
Cheng, L., Fenter, P., Nagy, K.L., Schlegel, M.L., Sturchio, N.C., Phys. Rev. Lett. 87, 156103 (2001).Google Scholar
Fenter, P., Kerisit, S., Raiteri, P., Gale, J.D., J. Phys. Chem. C 117, 5028 (2013).Google Scholar
Fenter, P., Sturchio, N.C., Geochim. Cosmochim. Acta 97, 58 (2012).Google Scholar
Mezger, M., Schöder, S., Reichert, H., Schröder, H., Okasinski, J., Honkimäki, V., Ralston, J., Bilgram, J., Roth, R., Dosch, H., J. Chem. Phys. 128, 244705 (2008).Google Scholar
Poynor, A., Hong, L., Robinson, I.K., Granick, S., Zhang, Z., Fenter, P.A., Phys. Rev. Lett. 97, 266101 (2006).Google Scholar
Uysal, A., Chu, M.Q., Stripe, B., Timalsina, A., Chattopadhyay, S., Schlepütz, C.M., Marks, T.J., Dutta, P., Phys. Rev. B. 88, 035431 (2013).Google Scholar
Zhou, H., Ganesh, P., Presser, V., Wander, M.C.F., Fenter, P., Kent, P.R.C., Jiang, D.E., Chialvo, A.A., McDonough, J., Shuford, K.L., Gogotsi, Y., Phys. Rev. B. 85, 035406 (2012).Google Scholar
Fenter, P., Sturchio, N.C., Prog. Surf. Sci. 77, 171 (2004).Google Scholar
Geissbühler, P., Fenter, P., DiMasi, E., Srajer, G., Sorensen, L.B., Sturchio, N.C., Surf. Sci. 573, 191 (2004).Google Scholar
Israelachvili, J.N., Pashley, R.M., Nature 306, 249 (1983).Google Scholar
Pashley, R.M., Israelachvili, J.N., J. Colloid Interface Sci. 101, 511 (1984).Google Scholar
Shin, Y.J., Wang, Y.Y., Huang, H., Kalon, G., Wee, A.T.S., Shen, Z.X., Bhatia, C.S., Yang, H., Langmuir 26, 3798 (2010).Google Scholar
Emery, J.D., Detlefs, B., Karmel, H.J., Nyakiti, L.O., Gaskill, D.K., Hersam, M.C., Zegenhagen, J., Bedzyk, M.J., Phys. Rev. Lett. 111, 215501 (2013).Google Scholar
Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D., Phys. Rev. B. 77, 155303 (2008).Google Scholar
Wesolowski, D.J., Sofo, J.O., Bandura, A.V., Zhang, Z., Mamontov, E., Předota, M., Kumar, N., Kubicki, J.D., Kent, P.R.C., Vlcek, L., Machesky, M.L., Fenter, P.A., Cummings, P.T., Anovitz, L.M., Skelton, A.A., Rosenqvist, J., Phys. Rev. B. 85, 167401 (2012).Google Scholar
Lee, S.S., Fenter, P., Nagy, K.L., Sturchio, N.C., Langmuir 28, 8637 (2012).Google Scholar
Lee, S.S., Fenter, P., Park, C., Sturchio, N.C., Nagy, K.L., Langmuir 26, 16647 (2010).Google Scholar
Bandura, A.V., Sykes, D.G., Shapovalov, V., Troung, T.N., Kubicki, J.D., Evarestov, R.A., J. Phys. Chem. B 108, 7844 (2004).Google Scholar
Kerisit, S., Parker, S.C., J. Am. Chem. Soc. 126, 10152 (2004).Google Scholar
Park, S.H., Sposito, G., Phys. Rev. Lett. 89, 085501 (2002).Google Scholar
Chodankar, S., Perret, E., Nygård, K., Bunk, O., Satapathy, D.K., Espinosa Marzal, R.M., Balmer, T.E., Heuberger, M., van der Veen, J.F., Europhys. Lett. 99, 26001 (2012).Google Scholar