Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T15:23:28.821Z Has data issue: false hasContentIssue false

High-throughput calculations in the context of alloy design

Published online by Cambridge University Press:  09 April 2019

Axel van de Walle
Affiliation:
School of Engineering, Brown University, USA; [email protected]
Mark Asta
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley; and Materials Sciences Division, LawrenceBerkeleyNational Laboratory, USA; [email protected]
Get access

Abstract

Modern approaches to alloy design increasingly exploit the framework of computational thermodynamics and kinetics to guide the selection of alloy compositions and processing strategies, to achieve desired microstructures, and yield tailored properties. In this context, phase diagrams play a critical role and their assessment can represent a bottleneck in the design of new multicomponent systems. In recent years, it has become possible to accelerate this process through the coupling of the CALculation of PHAse Diagram (CALPHAD) computational thermodynamics framework with high-throughput quantum mechanical calculations. This article reviews recent developments and applications in this area, and discusses future opportunities for high-throughput calculations in the context of modeling kinetics, highlighting the important role of interfacial processes and atomic mobilities.

Type
Computational Design And Development Of Alloys
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Research Council, Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems (National Academies Press, Washington, DC, 2004).Google Scholar
National Science and Technology Council, Materials Genome Initiative for Global Competitiveness (Washington, DC, 2011).Google Scholar
de Pablo, J.J., Jones, B., Lind, C., Ozolins, V., Ramirez, A.P., Curr. Opin. Solid State Mater. Sci. 18, 99 (2014).CrossRefGoogle Scholar
Pollock, T.M., Allison, J.E., Backman, D.G., Boyce, M.C., Gersh, M., Holm, E.A., Lesar, R., Long, M., Powell, A.C. IV, Schirra, J.J., Whitis, D.D., Woodward, C., Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Academies Press, Washington, DC, 2008).Google Scholar
Xiong, W., Olson, G.B., NPJ Comput. Mater. 2, 14 (2016).CrossRefGoogle Scholar
Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater . 1, 11 (2013).CrossRefGoogle Scholar
Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65 (11), 1501 (2013).CrossRefGoogle Scholar
Choudhary, K., Zhang, Q., Reid, A.C.E., Chowdhury, S., Nguyen, N.V., Trautt, Z., Newrock, M.W., Congo, F.Y., Tavazza, F., Sci. Data 5, 12 (2018).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S.D., Xue, J.K., Yang, K.S., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Ghiringhelli, L.M., Carbogno, C., Levchenko, S., Mohamed, F., Huhs, G., Luders, M., Oliveira, M., Scheffler, M., NPJ Comput. Mater. 3, 9 (2017).CrossRefGoogle Scholar
Liebscher, C.H., Radmilovic, V.R., Dahmen, U., Vo, N.Q., Dunand, D.C., Asta, M., Ghosh, G., Acta Mater. 92, 220 (2015).CrossRefGoogle Scholar
Kaufman, L., CALPHAD 25, 141 (2001).CrossRefGoogle Scholar
Campbell, C.E., Kattner, U.R., Liu, Z.-K., Scripta Mater . 70, 7 (2014).CrossRefGoogle Scholar
Kattner, U.R., JOM 49, 14 (1997).CrossRefGoogle Scholar
Andersson, J.-O., Guillermet, A.F., Hillert, M., Jansson, B., Sundman, B., Acta Metall . 34, 437 (1986).CrossRefGoogle Scholar
Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.-H., Kang, Y.-B., Melançon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., Spencer, P., Van Ende, M.-A., CALPHAD 54, 35 (2016).CrossRefGoogle Scholar
Andersson, J.O., Helander, T., Hoglund, L., Shi, P.F., Sundman, B., CALPHAD 26, 273 (2002).CrossRefGoogle Scholar
Cao, W., Chen, S.-L., Zhang, F., Wu, K., Yang, Y., Chang, Y.A., Schmid-Fetzer, R., Oates, W.A., CALPHAD 33, 328 (2009).CrossRefGoogle Scholar
Sundman, B., Kattner, U.R., Sigli, C., Stratmann, M., Tellier, R.L., Palumbo, M., Fries, S.G., Comput. Mater. Sci. 125, 188 (2016).CrossRefGoogle Scholar
Otis, R.A., Liu, Z.-K., J. Open Res. Softw. 5, 1 (2017).CrossRefGoogle Scholar
Saunders, N., Miodownik, P., CALPHAD: A Comprehensive Guide (Elsevier, New York, 1998).Google Scholar
Liu, Z.K., J. Phase Equilib. Diffus. 30, 517 (2009).CrossRefGoogle Scholar
van de Walle, A., Nataraj, C., Liu, Z.-K., CALPHAD 61, 173 (2018).CrossRefGoogle Scholar
Abe, T., Hashimoto, K.S., Sawada, Y., Palumbo, M., Ogura, Y. (2007), http://cpddb.nims.go.jp/cpddb/periodic.htm.Google Scholar
Otis, R.A., Liu, Z.-K., JOM 69, 886 (2017).CrossRefGoogle Scholar
Senkov, O., Miller, J., Miracle, D.B., Woodward, C., CALPHAD 50, 32 (2015).CrossRefGoogle Scholar
Abu-Odeh, A., Arroyave, R., Galvan, E., Kirk, T., Malak, R., Mao, H., Chen, Q., Mason, P., Acta Mater. 152, 41 (2018).CrossRefGoogle Scholar
van de Walle, A., Sun, R., Hong, Q.-J., Kadkhodaei, S., CALPHAD 58, 70 (2017).CrossRefGoogle Scholar
Crivello, J.-C., Souques, R., Breidi, A., Bourgeois, N., Joubert, J.-M., CALPHAD 51, 233 (2015).CrossRefGoogle Scholar
Zunger, A., Wei, S.-H., Ferreira, L.G., Bernard, J.E., Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle Scholar
van de Walle, A., Tiwary, P., de Jong, M.M., Olmsted, D.L., Asta, M.D., Dick, A., Shin, D., Wang, Y., Chen, L.-Q., Liu, Z.-K., CALPHAD 42, 13 (2013).CrossRefGoogle Scholar
Kikuchi, R., Phys. Rev. 81, 988 (1951).CrossRefGoogle Scholar
van de Walle, A., Ceder, G., Rev. Mod. Phys. 74, 11 (2002).CrossRefGoogle Scholar
Hong, Q.-J., van de Walle, A., J. Chem. Phys. 139, 094114 (2013).CrossRefGoogle Scholar
Hong, Q.-J., van de Walle, A., Phys. Rev. B Condens. Matter 92, 020104(R) (2015).CrossRefGoogle Scholar
Wang, Y., Curtarolo, S., Jiang, C., Arroyave, R., Wang, T., Ceder, G., Chen, L.-Q., Liu, Z.-K., Calphad 28, 79 (2004).CrossRefGoogle Scholar
Hickel, T., Kattner, U.R., Fries, S.G., Phys. Status Solidi B 251, 9 (2014).CrossRefGoogle Scholar
Ozolins, V., Phys. Rev. Lett. 102, 065702 (2009).CrossRefGoogle Scholar
Craievich, P.J., Sanchez, J.M., Watson, R.E., Weinert, M., Phys. Rev. B Condens. Matter 55, 787 (1997).CrossRefGoogle Scholar
van de Walle, A., Hong, Q.-J., Kadkhodaei, S., Sun, R., Nat. Commun. 6, 7559 (2015).CrossRefGoogle Scholar
van de Walle, A., Kadkhodaei, S., Sun, R., Hong, Q.-J., Phys. Rev. B Condens. Matter 95, 144113 (2017).CrossRefGoogle Scholar
van de Walle, A., CALPHAD 60, 1 (2018).CrossRefGoogle Scholar
Dinsdale, A.T., CALPHAD 15, 317 (1991).CrossRefGoogle Scholar
Borgenstam, A., Engstrom, A., Hoglund, L., Agren, J., J. Phase Equilib. 21, 269 (2000).CrossRefGoogle Scholar
Silva, A.C.E., Agren, J., Clavaguera-Mora, M.T., Djurovic, D., Gomez-Acebo, T., Lee, B.J., Liu, Z.K., Miodownik, P., Seifert, H.J., CALPHAD 31, 53 (2007).CrossRefGoogle Scholar
Wu, H., Mayeshiba, T., Morgan, D., Sci. Data 3, 11 (2016).CrossRefGoogle Scholar
Van der Ven, A., Ceder, G., Phys. Rev. Lett. 94, 4 (2005).CrossRefGoogle Scholar
Van der Ven, A., Ceder, G., Asta, M., Tepesch, P.D., Phys. Rev. B Condens. Matter 64, 17 (2001).CrossRefGoogle Scholar
Van der Ven, A., Yu, H.C., Ceder, G., Thornton, K., Prog. Mater. Sci. 55, 61 (2010).CrossRefGoogle Scholar
Xu, Q.C., Van der Ven, A., Phys. Rev. B Condens. Matter 81, 5 (2010).Google Scholar
Bhattacharya, J., Van der Ven, A., Phys. Rev. B Condens. Matter 83, 9 (2011).Google Scholar
Mishin, Y., Asta, M., Li, J., Acta Mater. 58, 1117 (2010).CrossRefGoogle Scholar
Lu, S., Agren, J., Vitos, L., Acta Mater. 156, 20 (2018).CrossRefGoogle Scholar
Sangghaleh, A., Demkowicz, M.J., Comput. Mater. Sci. 145, 35 (2018).CrossRefGoogle Scholar
Zhu, Q., Samanta, A., Li, B.X., Rudd, R.E., Frolov, T., Nat. Commun. 9, 9 (2018).Google Scholar
Cheng, J.L., Luo, J., Yang, K.S., Comput. Mater. Sci. 155, 92 (2018).CrossRefGoogle Scholar