Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:24:45.640Z Has data issue: false hasContentIssue false

Hierarchical machining materials and their performance

Published online by Cambridge University Press:  08 September 2016

Daria Sidorenko
Affiliation:
National University of Science and Technology, Moscow Institute of Steel and Alloys, Russian Federation; [email protected]
Pavel Loginov
Affiliation:
National University of Science and Technology, Moscow Institute of Steel and Alloys, Russian Federation; [email protected]
Evgeny Levashov
Affiliation:
Department of Powder Metallurgy and Functional Coatings, Scientific-Educational Center of Self-Propagating High-Temperature Synthesis Center, National University of Science and Technology, Moscow Institute of Steel and Alloys, Russian Federation; [email protected]
Leon Mishnaevsky Jr.
Affiliation:
Department of Wind Energy, Technical University of Denmark, Denmark; [email protected]
Get access

Abstract

Machining is an important technological process in many areas of industry. The efficiency of machining determines the quality of many industrial products. Machining efficiency and cost depend on the properties, strength, and microstructure of the machining materials. One of the promising ways to increase the reliability and wear resistance of machining tools is the development and use of hierarchical machining materials. In the area of machining materials, designed typically as binder/reinforcement composites, hierarchical structures are realized as lower-scale secondary reinforcements (such as nanoparticles in the binder, or polycrystalline, aggregate-like reinforcements, also at several scale levels). Such materials can ensure better productivity, efficiency, and lower costs of drilling, cutting, grinding, and other technological processes. This article reviews the main groups of hierarchical machining materials and their performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, C.-S., Randow, C., Sano, T., Hybrid and Hierarchical Composite Materials (Springer International Publishing, Switzerland, 2015) p. 356.Google Scholar
Zhang, G.J., Jin, Z.Z., Yue, X.M., Mater. Lett. 28 (1–3), 1 (1996).CrossRefGoogle Scholar
Morito, S., Adachi, Y., Ohba, T., Mater. Trans. 50 (8), 1919 (2009).Google Scholar
Wang, S.S., Chang, L., Wang, L., Wang, T., Wu, Y.D., Si, J.J., Zhu, J., Zhang, M.X., Hui, X.D., Mater. Sci. Eng. A 622, 204 (2015).Google Scholar
Meng, Y., Sugiyama, S., Yanagimoto, J., J. Mater. Process. Technol. 225, 203 (2015).Google Scholar
Hossein Nedjad, S., Nili Ahmadabadi, M., Furuhara, T., Mater. Sci. Eng. A 485 (1–2), 544 (2008).CrossRefGoogle Scholar
Geller, Y., Tool Steels (Mir Publishers, Moscow, 1978), p. 584.Google Scholar
Fang, Z.Z., Griffo, A., White, B., Lockwood, G., Belnap, D., Hilmas, G., Bitler, J., Int. J. Refract. Metals Hard Mater. 19, 453 (2001).Google Scholar
Carpinteri, A., Paggi, M., Chaos Solitons Fractals 42, 2546 (2009).Google Scholar
Konyashin, I., Schaefer, F., Cooper, R., Ries, B., Mayer, J., Weirich, T., Int. J. Refract. Metals Hard Mater. 23, 225 (2005).Google Scholar
Konyashin, I., Ries, B., Lachmann, F., Cooper, R., Mazilkin, A., Straumal, B., Aretz, A., Babaev, V., Int. J. Refract. Metals Hard Mater. 26, 583 (2008).Google Scholar
Konyashin, I., Ries, B., Hlawatschek, D., Zhuk, Y., Mazilkin, A., Straumal, B., Dorn, F., Park, D., Int. J. Refract. Metals Hard Mater. 49, 203 (2015).Google Scholar
Ren, X., Peng, Z., Peng, Y., Fu, Z., Wang, C., Qi, L., Miao, H., Int. J. Refract. Metals Hard Mater. 36, 294 (2013).Google Scholar
Bellosi, A., De Portu, G., Mater. Sci. Eng. A 109, 357 (1989).Google Scholar
Wang, M., Wang, C., Zhang, X., Mater. Des. 34, 293 (2012).CrossRefGoogle Scholar
Yang, F., Zhang, X., Han, J., Du, S., Mater. Des. 29, 1817 (2008).Google Scholar
Mitomo, M., Uenosono, S., J. Am. Ceram. Soc. 75, 103 (1992).Google Scholar
Bai, X., Huang, C., Wang, J., Zou, B., Liu, H., Ceram. Int. 41, 12798 (2015).Google Scholar
Yin, Z., Huang, C., Yuan, J., Zou, B., Liu, H., Zhu, H., Ceram. Int. 41, 7059 (2015).Google Scholar
Manakova, O.S., Kurbatkina, V.V., Levashov, E.A., Russ. J. Non-Ferr. Met. 56, 486 (2015).Google Scholar
Levashov, E.A., Shtansky, D.V., Lobov, A.L., Borovinskaya, I.P., Int. J. Self Propag. High Temp. Synth. 2, 165 (1993).Google Scholar
Levashov, E.A., Shtansky, D.V., Lobov, A.L., Merzhanov, A.G., Phys. Met. Metallogr. 77, 118 (1994).Google Scholar
Novikov, N.V., Bogatyreva, G.P., Bogdanov, R.K., Il’nitskaya, G.D., Isonkin, A.M., J. Superhard Mater. 31 (6), 413 (2009).Google Scholar
Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Kurbatkina, V.V., Levashov, E.A., Sevast’yanov, P.I., Rupasov, S.I., Russ. J. Non-Ferr. Met. 55, 639 (2014).Google Scholar
Romański, A., Arch. Metall. Mater. 55, 1073 (2010).Google Scholar
Suzuki, T., Konno, T., Precis. Eng. 38, 659 (2014).Google Scholar
Zaitsev, A.A., Kurbatkina, V.V., Levashov, E.A., Russ. J. Non-Ferr. Met. 49, 414 (2008).Google Scholar
Konstanty, J., Powder Metallurgy Diamond Tools (Elsevier, Oxford, UK, 2005).Google Scholar
Loginov, P., Mishnaevsky, L. Jr., Levashov, E., Petrzhik, M., Mater. Des. 88, 310 (2015).Google Scholar
Mahathanabodee, S., Palathai, T., Raadnui, S., Tongsri, R., Sombatsompop, N., Wear 316, 37 (2014).Google Scholar
Sidorenko, D., Mishnaevsky, L. Jr., Levashov, E., Loginov, P., Petrzhik, M., Mater. Des. 83, 536 (2015).Google Scholar
Lin, B., Wang, X., Zhang, Y., Zhu, J., Zhang, H., Surf. Coat. Technol. 278, 163 (2015).Google Scholar
Shen, X.-Y., He, X.-B., Ren, S.-B., Zhang, H.-M., Qu, X.-H., J. Alloys Compd, 529, 134 (2012).Google Scholar
Chu, K., Liu, Z., Jia, C., Chen, H., Liang, X., Gao, W., Tian, W., Guo, H., J. Alloys Compd. 490, 453 (2010).Google Scholar
Sidorenko, D., Levashov, E., Loginov, P., Shvyndina, N., Skryleva, E., Yerokhin, A., Mater. Des. 106, 6 (2016).Google Scholar