Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T00:34:43.988Z Has data issue: false hasContentIssue false

Genetic Production of Synthetic Protein Polymers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A goal of polymer chemistry is to control the final properties of a processed material by controlling the chemistry and physics of the polymer chain. Since the final formulated materials' properties are a complex function of chemical and physical interactions at both the micro and macro scales, it would be desirable to influence those interactions at the level of the molecular chemistry of the chain. However, in order to affect those macromolecular associations that occur via chemical functionalities separated over long distances, a chemistry is needed that can specify not only variability in chemical composition along the chain but can also specify the positions at which this chemical variability must occur over the entire length of the chain—several hundred nanometers.

Protein-based materials in nature are formulated from protein chains which have evolved chemical compositions that through the specific sequence of their amino acid monomer constituents can result in diverse materials such as ultrahigh strength fibers, silks and collagens, and soft, ultradurable elastomers, elastin. As described in the article by Kaplan in this issue, the fundamental six amino acid repeat of the crystalline fraction of Bombyx mori silk fibroin is composed of essentially three amino acids, glycine (G), alanine (A), and serine (S), in a 3:2:1 ratio. The strength of the fiber is derived from these crystallized peptide blocks. They are positioned to a great extent as tandem repeats of the sequence GAGAGS.

Type
Biology and Materials Synthesis
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gosline, J.M., DeMont, M.E., and Denny, M.W., Endeavor 10 (1986) p. 37.CrossRefGoogle Scholar
2.Urry, D.W., J. Protein Chem. 3 (1984) p. 403.CrossRefGoogle Scholar
3.Lucas, F., Shaw, J.T.B., and Smith, S.G., Shirley Inst. Mem. 28 (1955) p. 77.Google Scholar
4.Fraser, R.D.B. and MacRae, T.P., in Conformation of Fibrous Proteins (Academic Press, New York, 1973).Google Scholar
5.Kaplan, D.L., Fossey, S.A., Viney, C., and Muller, W.S., in Hierarchically Structured Materials, edited by Aksay, I.A., Baer, Eric, Sarikaya, M., and Tirrell, D. (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992) p. 1930.Google Scholar
6.Goldberg, I., Salerno, A.J., Patterson, T., and Williams, J.I., Gene 80 (1989) p. 305.CrossRefGoogle ScholarPubMed
7.Strausberg, R.L., Anderson, D.M., Filpula, D., Finkelman, M., Link, R., McCandliss, R., Orndorff, S.A., Strausberg, S.L., and Wei, T., in Adhesion from Renewable Resources, edited by Hemingway, R.W., Conners, A.H., and Branham, S.J. (American Chemical Society, Washington DC, 1989) p. 453.CrossRefGoogle Scholar
8.Cappello, J., Crissraan, J.W., Dorman, M., Mikolajczak, M., Textor, G., Marquet, M., and Ferrari, F., Biotechnol. Prog. 6 (1990) p. 198.CrossRefGoogle Scholar
9.McGrath, K.P., Fournier, M.J., Mason, T.L., and Tirrell, D.A., J. Am. Chem. Soc. 114 (1992) p. 727.CrossRefGoogle Scholar
10.Creel, H.S., Fournier, M.J., Mason, T.L., and Tirrell, D.A., Macromolecules 24 (1991) p. 1213.CrossRefGoogle Scholar
11.Urry, D.W., Parker, T.M., Minehan, D.S., Nicol, A., Pattanaik, A., Peng, S.Q., Morrow, C., and McPherson, D.T., Proc. Amer. Chem. Soc. PMSE 66 (1992) p. 399.Google Scholar
12.Masilamani, D., Goldberg, I., Salerno, A.J., Oleksiuk, M.A., Unger, P.D., Piascik, D.A., and Bhattacharjee, H.R., in Biotechnology and Polymers, edited by Gebelein, C.G. (Plenum Press, New York, 1991) p. 245.CrossRefGoogle Scholar
13.Cappello, J. and Crissman, J.W., Polymer Preprints 31 (1990) p. 193.Google Scholar
14.Beavis, R.C., Chait, B.T., Creel, H.S., Fournier, M.J., Mason, T.L., and Tirrell, D.A., Proc. Am. Chem. Soc. PMSE 66 (1992) p. 27.Google Scholar
15.Carlson, M. and Brutlag, D., Cell 11 (1977) p. 371.CrossRefGoogle Scholar
16.Sadler, J.R., Tacklenburg, M., and Betz, J.L., Gene 8 (1980) p. 279.CrossRefGoogle Scholar
17.Gupta, S.C., Weith, H.L., and Somerville, R.L., Biotechnology 1 (1983) p. 602.Google Scholar
18.Lohe, R.A. and Brutlag, D.L., Proc. Natl. Acad. Sci. USA 83 (1986) p. 696.CrossRefGoogle Scholar
19.Salerno, A. and Goldberg, I., presented at the 1992 Keystone Symposium on Tissue Engineering, Keystone, CO, 1992 (unpublished).Google Scholar
20.Cappello, J. and Ferrari, F.A., unpublished.Google Scholar
21.Ferrari, F.A., Richardson, C., Chambers, J., Causey, J., and Pollock, S.C., Patent Application No. WO88/03533 (1986).Google Scholar
22.de Boer, H.A. and Kastelein, R.A., in Maximizing Gene Expression, edited by Reznikoff, W.S. and Gold, L. (Butterworth, Boston, 1986) p. 225.CrossRefGoogle Scholar
23.Baker, T.A., Grossman, A.D., and Gross, C.A., Proc. Natl. Acad. Sci. USA 81 (1984) p. 6779.CrossRefGoogle Scholar
24.Goff, S.A., Carson, L.P., and Goldberg, A.L., Proc. Natl. Acad. Sci. USA 81 (1984) p. 6647.CrossRefGoogle Scholar
25.Tirrell, D.A., Fournier, M.J., and Mason, T.L., MRS Bulletin 16 (7) (1991) p. 23.CrossRefGoogle Scholar