Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T08:43:21.793Z Has data issue: false hasContentIssue false

Future of dynamic random-access memory as main memory

Published online by Cambridge University Press:  10 May 2018

Seong Keun Kim
Affiliation:
Center for Electronic Materials, Korea Institute of Science and Technology, South Korea; [email protected]
Mihaela Popovici
Affiliation:
Semiconductor Technology and Systems Unit, IMEC, Belgium; [email protected]
Get access

Abstract

Dynamic random-access memory (DRAM) is the main memory in most current computers. The excellent scalability of DRAM has significantly contributed to the development of modern computers. However, DRAM technology now faces critical challenges associated with further scaling toward the ∼10-nm technology node. This scaling will likely end soon because of the inherent limitations of charge-based memory. Much effort has been dedicated to delaying this. Novel cell architectures have been designed to reduce the cell area, and new materials and process technologies have been extensively investigated, especially for dielectrics and electrodes related to charge storage. In this article, the current issues, recent progress in and the future of DRAM materials, and fabrication technologies are discussed.

Type
Materials for Advanced Semiconductor Memories
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hwang, C.S., Adv. Electron. Mater. 1, 1400056 (2015).CrossRefGoogle Scholar
International Technology Roadmap for Semiconductors (2013), http://www.itrs2.net.Google Scholar
Kim, J.Y., Lee, C.S., Kim, S.E., Chung, I.B., Choi, Y.M., Park, B.J., Lee, J.W., Kim, D.I., Hwang, Y.S., Hwang, D.S., Hwang, H.K., Park, J.M., Kim, D.H., Kang, N.J., Cho, M.H., Jeong, M.Y., Kim, H.J., Han, J.N., Kim, S.Y., Nam, B.Y., Park, H.S., Chung, S.H., Lee, J.H., Park, J.S., Kim, H.S., Park, Y.J., Kim, K., Symp. VLSI Technol. Dig. Tech. Pap. (2003), p. 11.Google Scholar
Kim, J.V., Oh, H.J., Woo, D.S., Lee, Y.S., Kim, D.H., Kim, S.E., Ha, G.W., Kim, H.J., Kang, N.J., Park, J.M., Hwang, Y.S., Kim, D.I., Park, B.J., Huh, M., Lee, B.H., Kim, S.B., Cho, M.H., Jung, M.Y., Kim, Y.I., Jin, C., Shin, D.W., Shim, M.S., Lee, C.S., Lee, W.S., Park, J.C., Jin, G.Y., Park, Y.J., Kim, K., Symp. VLSI Technol. Dig. Tech. Pap. (2005), p. 34.Google Scholar
Lee, C., Park, J.C., Park, S.H., Lee, S.S., Hong, S.D., Kim, I.G., Choi, Y.J., Lee, T.W., Jin, G.Y., Kim, K., International Conference on Solid State Devices and Materials (Tsukuba, Japan, 2007), p. 228.Google Scholar
Park, K.-H., Han, K.-R., Lee, J.-H., IEEE Electron Device Lett. 26, 690 (2005).CrossRefGoogle Scholar
Yang, C.M., Wei, C.K., Chang, Y.J., Wu, T.C., Chen, H.P., Lai, C.S., IEEE Trans. Device Mater. Reliab. 16, 685 (2016).CrossRefGoogle Scholar
Hwang, C.S., Kim, S.K., Lee, S.W., in Atomic Layer Deposition for Semiconductors, Hwang, C.S., Ed. (Springer, Boston, 2014), chap. 4.CrossRefGoogle Scholar
Schloesser, T., Jakubowski, F., Kluge, J.V., Graham, A., Slesazeck, S., Popp, M., Baars, P., Muemmler, K., Moll, P., Wilson, K., Buerke, A., Koehler, D., Radecker, J., Erben, E., Zimmermann, U., Vorrath, T., Fischer, B., Aichmayr, G., Agaiby, R., Pamler, W., Schster, T., Bergner, W., Mueller, W., Proc. IEEE Int. Electron Dev. Mtg. (IEDM) (San Francisco, CA, 2008), p. 1.Google Scholar
Chung, H., Kim, H., Kim, H., Kim, K., Kim, S., Song, K.W., Kim, J., Oh, Y.C., Hwang, Y., Hong, H., Jin, G.Y., Chung, C., Proc. Eur. Solid-State Dev. Res. Conf. (ESSDERC) (IEEE, Helsinki, Finland, 2011), p. 211.Google Scholar
Kim, S.K., Lee, S.W., Han, J.H., Lee, B., Han, S., Hwang, C.S., Adv. Funct. Mater. 20, 2989 (2010).CrossRefGoogle Scholar
Kim, S.K., Kim, W.D., Kim, K.M., Hwang, C.S., Jeong, J., Appl. Phys. Lett. 85, 4112 (2004).CrossRefGoogle Scholar
Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A., Dobročka, E., Hušková, K., J. Vac. Sci. Technol. B 27, 266 (2009).CrossRefGoogle Scholar
Menou, N., Popovici, M., Clima, S., Opsomer, K., Polspoel, W., Kaczer, B., Rampelberg, G., Tomida, K., Pawlak, M.A., Detavernier, C., Pierreux, D., Swerts, J., Maes, J.W., Manger, D., Badylevich, M., Afanasiev, V., Conard, T., Favia, P., Bender, H., Brijs, B., Vandervorst, W., Elshocht, S.V., Pourtois, G., Wouters, D.J., Biesemans, S., Kittl, J.A., J. Appl. Phys. 106, 094101 (2009).CrossRefGoogle Scholar
Popovici, M., Kim, M.-S., Tomida, K., Swerts, J., Tielens, H., Moussa, A., Richard, O., Bender, H., Franquet, A., Conard, T., Altimime, L., Elshocht, S.V., Kittl, J.A., Microelectron. Eng. 88, 1517 (2011).CrossRefGoogle Scholar
Pawlak, M.A., Swerts, J., Popovici, M., Kaczer, B., Kim, M.-S., Wang, W.-C., Tomida, K., Govoreanu, B., Delmotte, J., Afanas’ev, V.V., Schaekers, M., Vandervorst, W., Kittl, J.A., Appl. Phys. Lett. 101, 042901 (2012).CrossRefGoogle Scholar
Swerts, J., Popovici, M., Kaczer, B., Aoulaiche, M., Redolfi, A., Clima, S., Caillat, C., Wang, W.C., Afanas’ev, V.V., Jourdan, N., Olk, C., Hody, H., Elshocht, S.V., Jurczak, M., IEEE Electron Device Lett. 35, 753 (2014).CrossRefGoogle Scholar
Kim, S.K., Kim, K.M., Jeong, D.S., Jeon, W., Yoon, K.J., Hwang, C.S., J. Mater. Res. 28, 313 (2013).CrossRefGoogle Scholar
Kuesters, K.H., Beug, M.F., Schroeder, U., Nagel, N., Bewersdorff, U., Dallmann, G., Jakschik, S., Knoefler, R., Kudelka, S., Ludwig, C., Manger, D., Mueller, W., Tilke, A., Adv. Eng. Mater. 11, 241 (2009).CrossRefGoogle Scholar
Knebel, S., Pešić, M., Cho, K., Chang, J., Lim, H., Kolomiiets, N., Afanas’ev, V.V., Muehle, U., Schroeder, U., Mikolajick, T., J. Appl. Phys. 117, 224102 (2015).CrossRefGoogle Scholar
Kil, D.S., Song, H.S., Lee, K.J., Hong, K., Kim, J.H., Park, K.S., Yeom, S.J., Roh, J.S., Kwak, N.J., Sohn, H.C., Kim, J.W., Park, S.W., Symp. VLSI Technol. Dig. Tech. Pap. (2006), p. 38.Google Scholar
Robertson, J., Eur. Phys. J. Appl. Phys. 28, 265 (2004).CrossRefGoogle Scholar
Popovici, M., Van Elshocht, S., Menou, N., Swerts, J., Pierreux, D., Delabie, A., Brijs, B., Conard, T., Opsomer, K., Maes, J.W., Wouters, D.J., Kittl, J.A., J. Electrochem. Soc. 157, G1 (2010).CrossRefGoogle Scholar
Kil, D.S., Lee, J.M., Roh, J.S., Chem. Vap. Depos. 8, 195 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
Kosola, A., Putkonen, M., Johansson, L.-S., Niinistö, L., Appl. Surf. Sci. 211, 102 (2003).CrossRefGoogle Scholar
Kwon, O.S., Kim, S.K., Cho, M., Hwang, C.S., Jeong, J., J. Electrochem. Soc. 152, C229 (2005).CrossRefGoogle Scholar
Kwon, O.S., Lee, S.W., Han, J.H., Hwang, C.S., J. Electrochem. Soc. 154, G127 (2007).CrossRefGoogle Scholar
Lee, W., Han, J.H., Jeon, W., Yoo, Y.W., Lee, S.W., Kim, S.K., Ko, C.H., Lansalot-Matras, C., Hwang, C.S., Chem. Mater. 25, 953 (2013).CrossRefGoogle Scholar
Longo, V.V., Leick, N.N., Roozeboom, F.F., Kessels, W.E., ECS J. Solid State Sci. Technol. 2, N15 (2013).CrossRefGoogle Scholar
Popovici, M., Kaczer, B., Afanas’ev, V.V., Sereni, G., Larcher, L., Redolfi, A., Elshocht, S.V., Jurczak, M., Phys. Status Solidi Rapid Res. Lett. 10, 420 (2016).CrossRefGoogle Scholar
Lee, S.W., Han, J.H., Han, S., Lee, W., Jang, J.H., Seo, M., Kim, S.K., Dussarrat, C., Gatineau, J., Min, Y.-S., Hwang, C.S., Chem. Mater. 23, 2227 (2011).CrossRefGoogle Scholar
Lee, W., Han, J.H., Lee, S.W., Han, S., Jeon, W.J., Hwang, C.S., J. Mater. Chem. 22, 15037 (2012).CrossRefGoogle Scholar
Lee, W., Jeon, W., An, C.H., Chung, M.J., Kim, H.J., Eom, T., George, S.M., Park, B.K., Han, J.H., Kim, C.G., Chung, T.-M., Lee, S.W., Hwang, C.S., Chem. Mater. 27, 3881 (2015).CrossRefGoogle Scholar
Kim, S.K., Lee, S.Y., Seo, M., Choi, G.J., Hwang, C.S., J. Appl. Phys. 102, 024109 (2007).CrossRefGoogle Scholar
Kim, W.D., Hwang, G.W., Kwon, O.S., Kim, S.K., Cho, M., Jeong, D.S., Lee, S.W., Seo, M.H., Hwang, C.S., Min, Y.S., Cho, Y.J., J. Electrochem. Soc. 152, C552 (2005).CrossRefGoogle Scholar
Kadoshima, M., Hiratani, M., Shimamoto, Y., Torii, K., Miki, H., Kimura, S., Nabatame, T., Thin Solid Films 424, 224 (2003).CrossRefGoogle Scholar
Popovici, M., Swerts, J., Tomida, K., Radisic, D., Kim, M.-S., Kaczer, B., Richard, O., Bender, H., Delabie, A., Moussa, A., Vrancken, C., Opsomer, K., Franquet, A., Pawlak, M.A., Schaekers, M., Altimime, L., Van Elshocht, S., Kittl, J.A., Phys. Status Solidi Rapid Res. Lett. 5, 19 (2011).CrossRefGoogle Scholar
Kim, S.K., Hwang, G.W., Kim, W.D., Hwang, C.S., Electrochem. Solid-State Lett. 9, F5 (2006).CrossRefGoogle Scholar
Kim, S.K., Choi, G.J., Lee, S.Y., Seo, M., Lee, S.W., Han, J.H., Ahn, H.S., Han, S., Hwang, C.S., Adv. Mater. 20, 1429 (2008).CrossRefGoogle Scholar
Kim, S.K., Choi, G.J., Kim, J.H., Hwang, C.S., Chem. Mater. 20, 3723 (2008).CrossRefGoogle Scholar
Jeon, W., Yoo, S., Kim, H.K., Lee, W., An, C.H., Chung, M.J., Cho, C.J., Kim, S.K., Hwang, C.S., ACS Appl. Mater. Interfaces 6, 21632 (2014).CrossRefGoogle Scholar
Choi, G.J., Kim, S.K., Won, S.J., Kim, H.J., Hwang, C.S., J. Electrochem. Soc. 156, G138 (2009).CrossRefGoogle Scholar
Chen, S., Liu, Z., Feng, L., Che, X., Zhao, X., J. Rare Earths 32, 580 (2014).CrossRefGoogle Scholar
Kim, W.-H., Kim, M.-K., Oh, I.-K., Maeng, W.J., Cheon, T., Kim, S.-H., Noori, A., Thompson, D., Chu, S., Kim, H., J. Am. Ceram. Soc. 97, 1164 (2014).CrossRefGoogle Scholar
Govindarajan, S., Böscke, T.S., Sivasubramani, P., Kirsch, P.D., Lee, B.H., Tseng, H.-H., Jammy, R., Schröder, U., Ramanathan, S., Gnade, B.E., Appl. Phys. Lett. 91, 062906 (2007).CrossRefGoogle Scholar
Lamagna, L., Wiemer, C., Baldovino, S., Molle, A., Perego, M., Schamm-Chardon, S., Coulon, P.E., Fanciulli, M., Appl. Phys. Lett. 95, 122902 (2009).CrossRefGoogle Scholar
Park, B.-E., Oh, I.-K., Mahata, C., Lee, C.W., Thompson, D., Lee, H.-B.-R., Maeng, W.J., Kim, H., J. Alloys Compd. 722, 307 (2017).CrossRefGoogle Scholar
Popovici, M., Swerts, J., Redolfi, A., Kaczer, B., Aoulaiche, M., Radu, I., Clima, S., Everaert, J.-L., Elshocht, S.V., Jurczak, M., Appl. Phys. Lett. 104, 082908 (2014).CrossRefGoogle Scholar
Padmanabhan, R., Mohan, S., Morozumi, Y., Kaushal, S., Bhat, N., IEEE Trans. Electron Devices 63, 3928 (2016).CrossRefGoogle Scholar
Shin, Y., Min, K.K., Lee, S.-H., Lim, S.K., Oh, J.S., Lee, K.-J., Hong, K., Cho, B.J., Appl. Phys. Lett. 98, 173505 (2011).CrossRefGoogle Scholar
Ahn, J.-H., Kwon, S.-H., ACS Appl. Mater. Interfaces 7, 15587 (2015).CrossRefGoogle Scholar
Yim, K., Yong, Y., Lee, J., Lee, K., Nahm, H.-H., Yoo, J., Lee, C., Hwang, C.S., Han, S., NPG Asia Mater. 7, e190 (2015).CrossRefGoogle Scholar
Lee, W.C., Cho, C.J., Kim, S., Larsen, E.S., Yum, J.H., Bielawski, C.W., Hwang, C.S., Kim, S.K., J. Phys. Chem. C 121, 17498 (2017).CrossRefGoogle Scholar
Swerts, J., Delabie, A., Salimullah, M.M., Popovici, M., Kim, M.-S., Schaekers, M., Van Elshocht, S., ECS Solid State Lett. 1, P19 (2012).CrossRefGoogle Scholar
Han, J.H., Lee, S.W., Choi, G.-J., Lee, S.Y., Hwang, C.S., Dussarrat, C., Gatineau, J., Chem. Mater. 21, 207 (2009).CrossRefGoogle Scholar
Choi, G.J., Kim, S.K., Lee, S.Y., Park, W.Y., Seo, M., Choi, B.J., Hwang, C.S., J. Electrochem. Soc. 156, G71 (2009).CrossRefGoogle Scholar
Kim, J.-Y., Kil, D.-S., Kim, J.-H., Kwon, S.-H., Ahn, J.-H., Roh, J.-S., Park, S.-K., J. Electrochem. Soc. 159, H560 (2012).CrossRefGoogle Scholar
Han, J.H., Han, S., Lee, W., Lee, S.W., Kim, S.K., Gatineau, J., Dussarrat, C., Hwang, C.S., Appl. Phys. Lett. 99, 022901 (2011).CrossRefGoogle Scholar
Kim, J.-H., Kil, D.-S., Yeom, S.-J., Roh, J.-S., Kwak, N.-J., Kim, J.-W., Appl. Phys. Lett. 91, 052908 (2007).CrossRefGoogle Scholar
Schmelzer, S., Bräuhaus, D., Hoffmann-Eifert, S., Meuffels, P., Böttger, U., Oberbeck, L., Reinig, P., Schröder, U., Waser, R., Appl. Phys. Lett. 97, 132907 (2010).CrossRefGoogle Scholar
Popescu, D., Popescu, B., Jegert, G., Schmelzer, S., Boettger, U., Lugli, P., IEEE Trans. Electron Devices 61, 2130 (2014).CrossRefGoogle Scholar
Cho, C.J., Noh, M.-S., Lee, W.C., An, C.H., Kang, C.-Y., Hwang, C.S., Kim, S.K., J. Mater. Chem. C 5, 9405 (2017).CrossRefGoogle Scholar