Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T12:00:56.207Z Has data issue: false hasContentIssue false

Formation of Amorphous Metallic Alloys by Solid-State Reactions

Published online by Cambridge University Press:  29 November 2013

Ricardo B. Schwarz*
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, New Mexico
Get access

Abstract

For the last 25 years, amorphous metallic alloys have been prepared by the rapid quenching of melts. Recently, new methods of synthesis based on isothermal solid-state reactions have been developed. It has further been shown that the reaction products can be predicted from free energy diagrams that treat the amorphous alloy as an undercooled liquid. These discoveries have opened new windows to the synthesis of novel metastable materials, both amorphous and crystalline. This paper reviews the basic concepts behind amorphization by solid-state reactions and discusses our current understanding of the nucleation and growth of the amorphous alloy.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luborsky, F.E., ed., Amorphous Metallic Alloys, (Butterworths, London, 1983).CrossRefGoogle Scholar
2.Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3.Miedema, A.R., J. Less-Common Metals 46, 67 (1976).Google Scholar
4.Turnbull, David, Met. Trans. 12B, 217 (1981).Google Scholar
5.Balanzat, E. and Hillairet, J., J. Phys. F12, 2907 (1982).Google Scholar
6.Schwarz, R.B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
7.Schröder, H., Samwer, K., and Köster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
8.Hood, G.M. and Schultz, R.J., Acta Metall. 22, 459 (1974).CrossRefGoogle Scholar
9.Cheng, Y.-T., Johnson, W.L., and Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).Google Scholar
10.Barbour, J.C., Nastasi, M., and Mayer, J.W., Submitted to J. Appl. Phys. (1986).Google Scholar
11.Hahn, H., Averback, R.S., and Rothman, S.J., Submitted to Phys. Rev. B, Rapid Comm. (1986).Google Scholar
12.Schwarz, R.B., Wong, K.L., Johnson, W.L., and Clemens, B.M., J. Non-Cryst. Solids, 61 & 62, 129 (1984).Google Scholar
13.Clemens, B.M., Johnson, W.L., and Schwarz, R.B., J. Non-Cryst. Solids, 61 & 62, 817 (1984).Google Scholar
14.Clemens, B.M. and Suchoski, M.J., Appl. Phys. Lett. 47, 943 (1985).CrossRefGoogle Scholar
15.Guilmin, P., Guyot, P., and Marchal, G., Submitted to Phys. Lett. (1985).Google Scholar
16.Le Claire, A. D., in Properties of Atomic Defects in Metals, ed. Peterson, N.L. and Siegel, R.W. (North Holland, Amsterdam, 1978), p. 70.Google Scholar
17.Malik, S.K. and Wallace, W.E., Solid State Commun. 24, 283 (1977).CrossRefGoogle Scholar
18.Yeh, X.L., Samwer, K., and Johnson, W.L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
19.White, R.L., PhD Thesis, Stanford University (1980).Google Scholar
20.Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
21.Politis, C. and Johnson, W.L., Submitted to Appl. Phys. (1986).Google Scholar
22.Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
23.Schwarz, R.B. and Koch, C.C., To appear in Appl. Phys. Lett., July 21, 1986.Google Scholar
24.Wagner, C.N.J. and Lee, D., J. Phys. (Paris), Colloq. 41, C8-242 (1980).Google Scholar
25.Schultz, L., in Amorphous Metals and Non-Equilibrium Processing, Proc. MRS-Europe Meeting, Strasbourg, 1984 (Les Editions de Phys., Les Zolis Cedex, France).Google Scholar
26.Atzmon, M., Verhoeven, J.D., Gibson, E.D., and Johnson, W.L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar