Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T11:36:13.315Z Has data issue: false hasContentIssue false

Ferroelectric glass-ceramics

Published online by Cambridge University Press:  06 March 2017

Manuel Pedro Fernandes Graça
Affiliation:
Institute of Nanostructures, Nanofabrication, and Nanomodeling, Universidade de Aveiro, Portugal; [email protected]
Manuel Almeida Valente
Affiliation:
Institute of Nanostructures, Nanofabrication, and Nanomodeling, Universidade de Aveiro, Portugal; [email protected]
Get access

Abstract

Many current technological applications are based on the electrical properties of materials. Among these, ferroelectricity, antiferroelectricity, paraelectricity, and resistivity are the most important to be studied and controlled. To overcome important drawbacks of sintered ceramics or single crystals with these characteristics, the preparation of glass-ceramics with these phases dispersed in a glass matrix is a possible solution. The formation of glass-ceramics shows great advantages—their properties (optical, electrical, mechanical, and chemical) can be controlled via the volume fraction of the dispersed active phase. Thus, the preparation and properties of glass-ceramics containing ferroelectric crystallites embedded in the glass matrix have received considerable interest. This article discusses state-of-the-art preparation of glass-ceramics with one important technological ferroelectric crystal, lithium niobate (LiNbO3). Since the preparation of LiNbO3 single crystals by traditional growth techniques is technically difficult and economically costly—and with dense ceramics, it is difficult to achieve a congruent composition—scientific research on the fabrication methods of inorganic glasses containing LiNbO3 crystallites is an important current topic.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curie, J., Curie, P., C. R. Acad. Sci. 91, 294 (1880).Google Scholar
Cady, W.G., “Report to the National Research Council” US Government Printing Office, (Washington, DC, May 1918).Google Scholar
Anderson, J.A., “Report to the National Research Council” US Government Printing Office, (Washington, DC, April/May 1918).Google Scholar
Valasek, J., Phys. Rev. 17 (4), 475 (1921).Google Scholar
Smolenskii, G.A., Ferroelectrics 53 (1), 129 (1984).Google Scholar
Xu, Y., Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, The Netherlands, 1991).Google Scholar
Jona, F., Shirane, G., Ferroelectric Crystals (Dover, New York, 1993).Google Scholar
Samara, G.A., J. Phys. Condens. Matter 15 (9), R367 (2003).CrossRefGoogle Scholar
Samara, G.A., Solid State Phys. 56, 239 (2001).CrossRefGoogle Scholar
Chattopadhyay, S., Phys. Rev. B Condens. Matter 52 (18), 13177 (1995).CrossRefGoogle Scholar
Ziebert, C., Schmitt, H., Krüger, J.K., Sternberg, A., Ehses, K.-H., Phys. Rev. B Condens. Matter 69, 214106 (2004).CrossRefGoogle Scholar
Blinc, R., Ferroelectrics 267, 3 (2002).Google Scholar
Aboulleil, M.M., Leonberger, F.J., J. Am. Ceram. Soc. 72, 1311 (1989).CrossRefGoogle Scholar
Weis, R.S., Gaylord, T.K., Appl. Phys. A 37, 191 (1985).Google Scholar
Haertling, G.H., J. Am. Ceram. Soc. 82 (4), 797 (1999).Google Scholar
Hecht, E., Optics (Fundação Calouste Gulbenkian, Lisboa, Portugal, 1991).Google Scholar
Vogel, E.M., J. Am. Ceram. Soc. 72, 719 (1989).Google Scholar
Lin, S., Tanaka, Y., Aono, M., Suzuki, T., J. Appl. Phys. 36, 3510 (1997).CrossRefGoogle Scholar
Paiva, J.A.C., Barbosa, P.C., Filho, J.M., Hernandes, A.C., Andreeta, J.P., Sombra, A.S.B., Opt. Mater. 1, 59 (1992).Google Scholar
Barbosa, P.C., Paiva, J.A.C., Filho, J.M., Hernandes, A.C., Andreeta, J.P., Sombra, A.S.B., Phys. Status Solidi A 125, 723 (1991).CrossRefGoogle Scholar
Paiva, J.A.C., Araujo, E.B., Hernandes, A.C., Sombra, A.S.B., Phys. Status Solidi A 147, 585 (1995).Google Scholar
Sorescu, M., Knobbe, E.T., Martin, J.J., Barrie, J.D., Barb, D., J. Mater. Sci. 30, 5944 (1995).Google Scholar
Ramabadran, U., de Brabander, G.N., Boyd, J.T., Jackson, H.E., Sriram, S., “Characterization of Ti:LiNbO3 Optical Channel Waveguides Fabricated Using Rapid Thermal Annealing,” Mater. Res. Soc. Symp. Proc. 152, Poker, D.B., Ortiz, C., Eds. (Materials Research Society, Warrendale, PA, 1989), p. 277.Google Scholar
Nozawa, T., Miyazawa, S., J. Appl. Phys. 35, 107 (1996).CrossRefGoogle Scholar
Feng, X., Tang, T.B., J. Phys. Condens. Matter 5, 2423 (1993).Google Scholar
Zaritskii, I.M., Rakitina, L.G., J. Phys. Condens. Matter 37, 1073 (1995).Google Scholar
Graça, M.P.F., Prezas, P.R., Costa, M.M., Valente, M.A., J. Solgel Sci. Technol. 64 (1), 78 (2012).CrossRefGoogle Scholar
Diaz-Caro, J., Garcia-Solé, J., Murrieta, H., Jaque, F., J. Lumin. 72–74, 177 (1997).Google Scholar
Burlot, R., Mancongé, R., Bovion, G., J. Lumin. 72–74, 135 (1997).Google Scholar
Muñoz, J.A., Di Paolo, R.E., Duchowicz, R., Tocho, J.O., Cussó, F., Solid State Commun. 107 (9), 487 (1998).CrossRefGoogle Scholar
Halliyal, A., Bhalla, A.S., Newnham, R.E., Mater. Res. Bull. 18, 1007 (1983).Google Scholar
Xu, Y., Xu, R., Cheng, C.-H., Mackenzie, J.D., “Electrical Properties of Amorphous Thin Films of Ferroelectric Oxides Prepared by Sol-Gel Technique,” Mater. Res. Soc. Symp. Proc. 310, Myers, E.R., Tuttle, B.A., Desu, S.B., Larsen, P.K., Eds. (Materials Research Society, Warrendale, PA, 1993), p. 441.Google Scholar
Mukherjee, P., Varma, K.B.R., Ferroelectrics 306, 129 (2004).CrossRefGoogle Scholar
Mehran, F., Scott, B.A., Solid State Commun. 11, 15 (1972).Google Scholar
Gerson, R., Kirchoff, J.F., J. Appl. Phys. 60, 3553 (1986).Google Scholar
Aegerter, M.A., J. Non Cryst. Solids 151, 195 (1992).Google Scholar
Navarro, J.M.F., El Vidrio (Instituto de Ceramica y Vidrio, Madrid, 1985).Google Scholar
Keding, R., Rüssel, C., J. Non Cryst. Solids 351, 144 (2005).Google Scholar
Komatsu, T., Tawarayama, H., Mohri, H., Matusita, K., J. Non Cryst. Solids 135, 105 (1991).Google Scholar
Prasad, E., Sayer, M., Vyas, H.M., J. Non Cryst. Solids 40, 119 (1980).CrossRefGoogle Scholar
Graça, M.P., Valente, M.A., Ferreira da Silva, M.G., J. Non Cryst. Solids 325, 267 (2003).CrossRefGoogle Scholar
Graça, M.P.F., Silva, M.G.F., Sombra, A.S.B., Valente, M.A., J. Non Cryst. Solids 352, 5199 (2006).CrossRefGoogle Scholar
Graça, M.P.F., Silva, M.G.F., Sombra, A.S.B., Valente, M.A., J. Non Cryst. Solids 354, 3408 (2008).Google Scholar
Graça, M.P.F., Valente, M.A., Silva, M.G.F., J. Mater. Sci. 41, 1137 (2006).CrossRefGoogle Scholar
Araujo, E.B., Paiva, J.A.C., Araujo, M.A.B., Sombra, A.S.B., Phys. Scr. 53, 104 (1996).CrossRefGoogle Scholar
Kim, H.G., Komatsu, T., Sato, R., Matusita, K., J. Non Cryst. Solids 162, 201 (1993).Google Scholar
Todorovíc, M., Radonjic, L., Ceram. Int. 23, 55 (1997).CrossRefGoogle Scholar
Komatsu, T., Kim, H.G., Mohri, H., J. Mater. Sci. Lett. 15, 2026 (1996).Google Scholar
Shankar, M.V., Varma, K.B.R., J. Non Cryst. Solids 243,192 (1999).Google Scholar
Ding, Y., Osaka, A., Miura, Y., J. Non Cryst. Solids 178, 103 (1994).CrossRefGoogle Scholar
Hasdemir, I., Brückner, R., Deubener, J., Phys. Chem. Glasses 39 (5), 253 (1998).Google Scholar
Galeener, F.L., Mikkelsen, J.C. Jr., Solid State Commun. 30, 505 (1979).CrossRefGoogle Scholar
Chowdari, B.V.R., Radhakrishnan, K., J. Non Cryst. Solids 110, 101 (1989).Google Scholar
Singh, K., Gandhi, P.R., Chaudhari, B.M., Solid State Ionics 28–30, 752 (1988).CrossRefGoogle Scholar
Tuller, H.L., Button, D.P., Proc. 6th Risø Int. Symp. Metall. Mater. Sci. (1985), pp. 119138.Google Scholar
Paul, A., Chemistry of Glasses (Chapman & Hall, London, 1982).CrossRefGoogle Scholar
Huang, P., Huang, X., Solid State Ionics 36, 59 (1989).Google Scholar
Gerth, K., Rüssel, C., Keding, R., Schleevoigt, P., Dunken, H., Phys. Chem. Glasses 40 (3), 135 (1999).Google Scholar
Davis, M.J., Vullo, P., Mitra, I., Blaum, P., Gudgel, K.-A., Donnelly, N.J., Randall, C.A., J. Am. Ceram. Soc. 91 (9), 2878 (2008).CrossRefGoogle Scholar
Davis, M.J., Int. J. Mater. Res. 99, 1 (2008).Google Scholar
Reznitchenk, L.A., Turik, A.V., Kuznetsova, E.M., Sakhnenk, V.P., J. Phys. Condens. Matter 13, 3875 (2001).CrossRefGoogle Scholar
Zeng, H.C., Tanaka, K., Hiaro, K., Soga, N., J. Non Cryst. Solids 209, 112 (1999).Google Scholar
Graça, M.P.F., Silva, M.G.F., Valente, M.A., J. Eur. Ceram. Soc. 28 (6), 1197 (2008).CrossRefGoogle Scholar
Graça, M.P.F., Silva, M.G.F., Sombra, A.S.B., Valente, M.A., J. Non Cryst. Solids 353, 4390 (2007).Google Scholar
Graça, M.P.F., Silva, M.G.F., Valente, M.A., Solid State Sci. 11 (2), 570 (2009).Google Scholar
Graça, M.P.F., Silva, M.G.F., Valente, M.A., J. Non Cryst. Solids 354, 901 (2008).Google Scholar
Graça, M.P.F., Silva, M.G.F., Valente, M.A., Key Eng. Mater. Adv. Mater. Forum I 230–232, 161 (2002).Google Scholar
Graça, M.P.F., Silva, M.G.F., Valente, M.A., J. Mater. Sci. 42 (8), 2543 (2007).Google Scholar
Graça, M.P.F., Silva, M.G.F., Sombra, A.S.B., Valente, M.A., Physica B 396 (1–2), 62 (2007).CrossRefGoogle Scholar
Agarwal, A.K., Day, D.E., J. Am. Ceram. Soc. 65 (2), 111 (1981).Google Scholar
Macedo, P.B., Moynihan, C.T., Bose, R., Phys. Chem. Glasses 13, 171 (1972).Google Scholar
Jonscher, A.K., Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).Google Scholar