Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T15:01:41.547Z Has data issue: false hasContentIssue false

Environmental degradation of thermal-barrier coatings by molten deposits

Published online by Cambridge University Press:  09 October 2012

Carlos G. Levi
Affiliation:
Materials Department, University of California, Santa Barbara; [email protected]
John W. Hutchinson
Affiliation:
School of Engineering and Applied Sciences, Harvard University; [email protected]
Marie-Hélène Vidal-Sétif
Affiliation:
Department of Metallic Materials and Structures, Onera, French Aerospace Lab; [email protected]
Curtis A. Johnson
Affiliation:
GE Global Research and Center for Thermal Spray Research, Stony Brook University; [email protected]
Get access

Abstract

Molten deposits based on calcium-magnesium alumino-silicates (CMAS), originating from siliceous debris ingested with the intake air, represent a fundamental threat to progress in gas turbine technology by limiting the operating surface temperature of coated components. The thermomechanical and thermochemical aspects of the CMAS interactions with thermal-barrier coatings, as well as the current status of mitigating strategies, are discussed in this article. Key challenges and research needs for developing adequate solutions are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McKee, D.W., Siemers, P.A., Thin Solid Films 73, 439 (1980).CrossRefGoogle Scholar
Nagelberg, A.S., J. Electrochem. Soc. 132 (10), 2502 (1985).CrossRefGoogle Scholar
Jones, R.L., Williams, C.E., Surf. Coat. Technol. 349 (1987).CrossRefGoogle Scholar
Leyens, C., Wright, I.G., Pint, B.A., Oxid. Met. 54 (5/6), 401 (2000).CrossRefGoogle Scholar
Strangman, T.E., Thin Solid Films 127, 93 (1985).CrossRefGoogle Scholar
Strangman, T.E., Neumann, J., Liu, A., “Thermal Barrier Coating Life—Prediction Model Development; Final Report” (NASA–Lewis Research Center, 1987).Google Scholar
Jones, R.L., “Experiences in seeking stabilizers for zirconia having hot corrosion-resistance and high temperature tetragonal (t’) stability” (NRL/MR/6170–96–7841, Naval Research Laboratory, 1996).Google Scholar
Raghavan, S., Mayo, M.J., Surf. Coat. Technol. 160, 187 (2002).CrossRefGoogle Scholar
Pitek, F.M., Levi, C.G., Surf. Coat. Technol. 201, 6044 (2007).CrossRefGoogle Scholar
Alvin, M.A., Pettit, F.S., Meier, G.H., Yanar, N.M., Chyu, M., Mazzotta, D., Slaughter, W., Karaivanov, V., Kang, B., Feng, C., Chen, R., Fu, T.C., in 5th International Conference on Advances in Materials Technology for Fossil Power Plants, Viswanathan, R., Gandy, D., Coleman, K., Eds. (Electric Power Research Institute, Inc., Marco Island, FL, 2008), pp. 413423.Google Scholar
Smialek, J.L., Archer, F.A., Garlick, R.G., JOM 46 (12), 39 (1994).CrossRefGoogle Scholar
Stott, F.H., de Wet, D.J., Taylor, R., MRS Bull. 19 (10), 46 (1994).CrossRefGoogle Scholar
Borom, M.P., Johnson, C.A., Peluso, L.A., Surf. Coat. Technol. 8687, 116 (1996).CrossRefGoogle Scholar
Krämer, S., Yang, J.Y., Johnson, C.A., Levi, C.G., J. Am. Ceram. Soc. 89 (10), 3167 (2006).CrossRefGoogle Scholar
Grant, K.M., Krämer, S., Löfvader, J.P.A., Levi, C.G., Surf. Coat. Technol. 202, 653 (2007).CrossRefGoogle Scholar
Grant, K.M., Krämer, S., Seward, G.G.E., Levi, C.G., J. Am. Ceram. Soc. 93 (10), 3504 (2010).CrossRefGoogle Scholar
Smialek, J.L., “The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils” (NASA TM-105234, NASA Lewis Research Center, 1991).Google Scholar
Braue, W., J. Mater. Sci. 44, 1664 (2009).CrossRefGoogle Scholar
Evans, A.G., Clarke, D.R., Levi, C.G., J. Eur. Ceram. Soc. 28 (7), 1405 (2008).CrossRefGoogle Scholar
Mercer, C., Faulhaber, S., Evans, A.G., Darolia, R., Acta Mater. 53 (4), 1029 (2005).CrossRefGoogle Scholar
Krämer, S., Faulhaber, S., Chambers, M., Clarke, D.R., Levi, C.G., Hutchinson, J.W., Evans, A.G., Mater. Sci. Eng., A 490, 26 (2008).CrossRefGoogle Scholar
Tolpygo, V.K., private communication.Google Scholar
Wessels, K.M., Jackson, R.W., Konitzer, D.G., Pollock, T.M., Levi, C.G., presented at the International Conference on Metallurgical Coatings and Thin Films, San Diego, CA, 2012.Google Scholar
Li, L., Clarke, D.R., Int. J. Appl. Ceram. Technol. 5 (3), 278 (2008).CrossRefGoogle Scholar
Wu, J., Guo, H.B., Gao, Y.Z., Gong, S.K., J. Eur. Ceram. Soc. 31, 1881 (2011).CrossRefGoogle Scholar
Braue, W., Mechnich, P., J. Am. Ceram. Soc. 94 (12), 4483 (2011).CrossRefGoogle Scholar
Maloney, M.J., in Turbine Forum (Forum of Technology, Germany, Nice-Port St. Laurent, France, 2006).Google Scholar
Evans, A.G., Hutchinson, J.W., Surf. Coat. Technol. 201, 7905 (2007).CrossRefGoogle Scholar
Sundaram, S., Lipkin, D.M., Johnson, C.A., Hutchinson, J.W., J. Appl. Mech. (2012), in press.Google Scholar
Aygun, A., Vasiliev, A.L., Padture, N.P., Ma, X., Acta Mater. 55 (20), 6734 (2007).CrossRefGoogle Scholar
Gledhill, A.D., Reddy, K.M., Drexler, J.M., Shinoda, K., Sampath, S., Padture, N.P., Mater. Sci. Eng., A 528, 7214 (2011).CrossRefGoogle Scholar
Mechnich, P., Braue, W., Schulz, U., J. Am. Ceram. Soc. 94 (3), 925 (2011).CrossRefGoogle Scholar
Bacos, M.-P., Dorvaux, J.-M., Lavigne, O., Mévrel, R., Poulain, M., Rio, C., Vidal-Setif, M.-H., in Aerospace Lab: The ONERA Journal (ONERA, Chatillon, France, 2011), issue 3.Google Scholar
Miller, R.A., Smialek, J.L., Garlick, R.G., in Science and Technology of Zirconia, Heuer, A.H., Hobbs, L.W., Eds. (The American Ceramic Society, Columbus, OH, 1981), vol. 3, pp. 241253.Google Scholar
Krogstad, J.A., Krämer, S., Lipkin, D.M., Johnson, C.A., Mitchell, D.R.G., Cairney, J.M., Levi, C.G., J. Am. Ceram. Soc. 94 (S1), S168 (2011).Google Scholar
Lipkin, D.M., Krogstad, J.A., Gao, Y., Johnson, C.A., Nelson, W.A., Levi, C.G., J. Am. Ceram. Soc. (2012), in press.Google Scholar
Maloney, M.J., US Patent 6,177,200, 2001.Google Scholar
Vassen, R., Stuke, A., Stöver, D., J. Therm. Spray Technol. 18 (2), 181 (2009).CrossRefGoogle Scholar
Strangman, T.E., Raybould, D., Jameel, A., Baker, W., Surf. Coat. Technol. 202, 658 (2007).CrossRefGoogle Scholar
Ford, W.E., in Dana’s Textbook of Mineralogy with an Extended Treatise on Crystallography and Physical Mineralogy, 4th Edition (Wiley, New York, 1954).Google Scholar
PTI, “Material Safety Data Sheet: Airport Runway Sand” (2007); www.powdertechnologyinc.com/secondary/msds.php.Google Scholar
Taylor, H.E., Lichte, F.E., Geophys. Res. Lett. 7 (11), 949 (1980).CrossRefGoogle Scholar
Chesner, W., Collins, R., MacKay, M., Emery, J., “User Guidelines for Waste and Byproduct Materials in Pavement Construction” (Federal Highway Administration, Washington, DC, 1997).Google Scholar
Chellah, N., Vidal-Sétif, M.-H., Petitjean, C., Panteix, P.-J., Rapin, C., Vilasi, M., in 8th International Symposium on High Temperature Corrosion and Protection of Materials (HTCPM8) (Les Embiez, France, 2012).Google Scholar
Steinke, T., Sebold, D., Mack, D.E., Vaßen, R., Stöver, D., Surf. Coat. Technol. 205, 2287 (2010).CrossRefGoogle Scholar
Rai, A.K., Bhattacharya, R.S., Wolfe, D.E., Eden, T.J., Int. J. Appl. Ceram. Technol. 7 (5), 662 (2010).CrossRefGoogle Scholar
Drexler, J.M., Shinoda, K., Ortiz, A.L., Li, D., Vasiliev, A.L., Gledhill, A.D., Sampath, S., Padture, N.P., Acta Mater. 58 6835 (2010).CrossRefGoogle Scholar
Drexler, J.M., Ortiz, A.L., Padture, N.P., Acta Mater. 60 5437 (2012).CrossRefGoogle Scholar
Bacos, M.-P., Dorvaux, J.-M., Landais, S., Lavigne, O., Mévrel, R., Poulain, M., Rio, C., Vidal-Sétif, M.-H., in Aerospace Lab: The ONERA Journal (ONERA, Chatillon, France, 2011), issue 3.Google Scholar
Hasz, W.C., Johnson, C.A., Borom, M.P., US Patent 5,660,885 (1997).Google Scholar
Fu, M., Darolia, R., Gorman, M.D., Nagaraj, B.A., US Patent 8,062,759 (2007).Google Scholar
Padture, N.P., Schlichting, K.W., Bhatia, T., Ozturk, A., Cetegen, B., Jordan, E.H., Gell, M., Jiang, S., Xiao, T.D., Strutt, P.R., Garcia, E., Miranzo, P., Osendi, M.I., Acta Mater. 49, 2251 (2001).CrossRefGoogle Scholar
Krämer, S., Yang, J.Y., Levi, C.G., J. Am. Ceram. Soc. 91 (2), 576 (2008).CrossRefGoogle Scholar
Drexler, J.M., Chen, C.H., Gledhill, A.D., Shinoda, K., Sampath, S., Padture, N.P., Surf. Coat. Technol. 206, 3911 (2012).CrossRefGoogle Scholar
Wellman, R.G., Nicholls, J.R., Tribol. Int. 41, 657 (2008).CrossRefGoogle Scholar
Hillery, R.V., Pilsner, B.H., McKnight, R.L., Cook, T.S., Hartle, M.S., “Thermal Barrier Coating Life Prediction Model Development” (NASA CR 180807, General Electric, 1988).Google Scholar
Zaleski, E., Jackson, R.W., Ensslen, C., Levi, C.G., 8th International Symposium on High Temperature Corrosion and Protection of Materials (HTCPM8) (Les Embiez, France, 2012).Google Scholar
Drexler, J.M., Aygun, A., Li, D., Vaßen, R., Steinke, T., Padture, N.P., Surf. Coat. Technol. 204 (16–17), 2683 (2010).CrossRefGoogle Scholar
Jackson, R.W., Zaleski, E.M., Begley, M.R., Levi, C.G., in International Conference on Metallurgical Coatings and Thin Films (San Diego, CA, 2012).Google Scholar
Novak, M.D., Zok, F.W., Rev. Sci. Instrum. 82 (115101) (2012).Google Scholar
NRC, “Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security” (9780309119993, The National Academies Press, Washington, DC, 2008).Google Scholar