Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T17:53:07.429Z Has data issue: false hasContentIssue false

Engineering and quantum control of single spins in semiconductors

Published online by Cambridge University Press:  06 February 2013

David M. Toyli
Affiliation:
Center for Spintronics and Quantum Computation, University of California, Santa Barbara; [email protected]
Lee C. Bassett
Affiliation:
Center for Spintronics and Quantum Computation, University of California, Santa Barbara; [email protected]
Bob B. Buckley
Affiliation:
Center for Spintronics and Quantum Computation, University of California, Santa Barbara; [email protected]
Greg Calusine
Affiliation:
Center for Spintronics and Quantum Computation, University of California, Santa Barbara; [email protected]
David D. Awschalom
Affiliation:
Center for Spintronics and Quantum Computation, University of California, Santa Barbara; [email protected]
Get access

Abstract

The nitrogen-vacancy (NV) center in diamond offers the opportunity to develop quantum technologies that leverage the defect’s atom-like properties using established engineering techniques from the semiconductor industry. While many NV center applications are motivated by the remarkable properties of isolated NV centers in bulk diamond, realizing these technologies requires addressing a number of device and materials engineering challenges unique to creating and controlling individual semiconductor spins. We review recent advances in interfacing NV centers with on-chip electronics that enable control over the defect’s spin and orbital degrees of freedom and review fabrication techniques for creating single NV centers with nanometer-scale placement accuracies. We also discuss efforts, motivated by the success of diamond NV center applications, to identify defect spins with similar properties to the NV center in more technologically mature semiconductors such as SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001).CrossRefGoogle Scholar
Hanson, R., Awschalom, D.D., Nature 453, 1043 (2008).Google Scholar
Toyli, D.M., Christle, D.J., Alkauskas, A., Van de Walle, C.G., Awschalom, D.D., Phys. Rev. X 2, 031001 (2012).Google Scholar
Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J., Phys. Rev. Lett. 93, 130501 (2004).Google Scholar
Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D., Science 326, 1520 (2009).Google Scholar
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Mater. 8, 383 (2009).CrossRefGoogle Scholar
Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Weis, C.D., Schenkel, T., Awschalom, D.D., Nat. Phys. 6, 668 (2010).Google Scholar
Fuchs, G.D., Falk, A.L., Dobrovitski, V.V., Awschalom, D.D., Phys. Rev. Lett. 108, 157602 (2012).CrossRefGoogle Scholar
van der Sar, T., Wang, Z.H., Blok, M.S., Bernien, H., Taminiau, T.H., Toyli, D.M., Lidar, D.A., Awschalom, D.D., Hanson, R., Dobrovitski, V.V., Nature 484, 82 (2012).Google Scholar
Fuchs, G.D., Burkard, G., Klimov, P.V., Awschalom, D.D., Nat. Phys. 7, 789 (2011).Google Scholar
Fu, K.-M.C., Santori, C., Barclay, P.E., Rogers, L., Manson, N., Beausoleil, R.G., Phys. Rev. Lett. 103, 256404 (2009).CrossRefGoogle Scholar
Buckley, B.B., Fuchs, G.D., Bassett, L.C., Awschalom, D.D., Science 330, 1212 (2010).Google Scholar
Bassett, L.C., Heremans, F.J., Yale, C.G., Buckley, B.B., Awschalom, D.D., Phys. Rev. Lett. 107, 266403 (2011).Google Scholar
Bernien, H., Childress, L., Robledo, L., Markham, M., Twitchen, D., Hanson, R., Phys. Rev. Lett. 108, 043604 (2012).CrossRefGoogle Scholar
Sipahigil, A., Goldman, M.L., Togan, E., Chu, Y., Markham, M., Twitchen, D.J., Zibrov, A.S., Kubanek, A., Lukin, M.D., Phys. Rev. Lett. 108, 143601 (2012).Google Scholar
Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sorenson, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D., Nature 466, 730 (2010).Google Scholar
Aharonovich, I., Greentree, A.D., Prawer, S., Nat. Photonics 5, 397 (2011).CrossRefGoogle Scholar
Rabeau, J.R., Reichart, P., Tamanyan, G., Jamieson, D.N., Prawer, S., Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Wrachtrup, J., Appl. Phys. Lett. 88, 023113 (2006).CrossRefGoogle Scholar
Meijer, J., Burchard, B., Domhan, M., Wittmann, C., Gaebel, T., Popa, I., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 87, 261909 (2005).Google Scholar
Weis, C.D., Schuh, A., Batra, A., Persaud, A., Rangelow, I.W., Bokor, J., Lo, C.C., Cabrini, S., Sideras-Haddad, E., Fuchs, G.D., Hanson, R., Awschalom, D.D., Schenkel, T., J. Vac. Sci. Technol., B 26, 2596 (2008).Google Scholar
Pezzagna, S., Wildanger, D., Mazarov, P., Wieck, A.D., Sarov, Y., Rangelow, I., Naydenov, B., Jelezko, F., Hell, S.W., Meijer, J., Small 6, 2117 (2010).Google Scholar
Toyli, D.M., Weis, C.D., Fuchs, G.D., Schenkel, T., Awschalom, D.D., Nano Lett. 10, 3168 (2010).Google Scholar
Hausmann, B.J.M., Babinec, T.M., Choy, J.T., Hodges, J.S., Hong, S., Bulu, I., Yacoby, A., Lukin, M.D., Loncar, M., New J. Phys. 13, 045004 (2011).Google Scholar
Naydenov, B., Reinhard, F., Lammle, A., Richter, V., Kalish, R., D’Haenens-Johansson, U.F.S., Newton, M., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 97, 242511 (2010).Google Scholar
Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., Yacoby, A., Nat. Nanotechnol. 7, 320 (2012).CrossRefGoogle Scholar
Staudacher, T., Ziem, F., Haussler, L., Stohr, R., Steinert, S., Reinhard, F., Scharpf, J., Denisenko, A., Wrachtrup, J., Appl. Phys. Lett. 101, 212401 (2012).Google Scholar
Ohno, K., Heremans, F.J., Bassett, L.C., Myers, B.A., Toyli, D.M., Bleszynski Jayich, A.C., Palmstrom, C.J., Awschalom, D.D., Appl. Phys. Lett. 101, 082413 (2012).Google Scholar
Ishikawa, T., Fu, K.-M.C., Santori, C., Acosta, V.M., Beausoleil, R.G., Watanabe, H., Shikata, S., Itoh, K.M., Nano Lett. 12, 2083 (2012).CrossRefGoogle Scholar
Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D., Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010).Google Scholar
Gali, A., Phys. Status Solidi B 248, 1337 (2011).Google Scholar
Lu, J., Chandrashekhar, M.V.S., Parks, J.J., Ralph, D.C., Spencer, M.G., Appl. Phys. Lett. 94, 162115 (2009).Google Scholar
Saddow, S.E., Agarwal, A., Eds., Advances in Silicon Carbide Processing and Applications (Artech House, Boston, 2004).Google Scholar
Zetterling, C.-M., Ed., Process Technology for Silicon Carbide Devices (Institution of Electrical Engineers, London, 2002).Google Scholar
Cheung, R., Ed., Silicon Carbide Microelectromechanical Systems for Harsh Environments (Imperial College Press, London, 2004).Google Scholar
Ryu, S.H., Kornegay, K.T., Cooper, J.A., Melloch, M.R., IEEE Trans. Electron Devices 45, 45 (1998).Google Scholar
Liu, L., Edgar, J.H., Mater. Sci. Eng., R 37, 61 (2002).Google Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Haas, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).Google Scholar
Son, N.T., Umeda, T., Isoya, J., Gall, A., Bockstedte, M., Magnusson, B., Ellison, A., Morishita, N., Ohshima, T., Itoh, H., Janzen, E., Mater. Sci. Forum 527529 (2006).Google Scholar
Koehl, W.F., Buckley, B.B., Heremans, F.J., Calusine, G., Awschalom, D.D., Nature 479, 84 (2011).Google Scholar