Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:58:24.409Z Has data issue: false hasContentIssue false

Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene

Published online by Cambridge University Press:  23 November 2012

L.O. Nyakiti
Affiliation:
Electronics Science and Technology Division, US Naval Research Laboratory; [email protected]
V.D. Wheeler
Affiliation:
Electronics Science and Technology Division, US Naval Research Laboratory; [email protected]
N.Y. Garces
Affiliation:
Electronics Science and Technology Division, US Naval Research Laboratory; [email protected]
R.L. Myers-Ward
Affiliation:
Electronics Science and Technology Division, US Naval Research Laboratory; [email protected]
C.R. Eddy Jr.
Affiliation:
Electronics Science and Technology Division, US Naval Research Laboratory; [email protected]
D.K. Gaskill
Affiliation:
Advanced SiC Epitaxial Research Laboratory, US Naval Research Laboratory; [email protected]
Get access

Abstract

Epitaxial graphene (EG) has attracted considerable interest because of its extraordinary properties and ability to be synthesized on the wafer scale. These attributes have enabled EG to be applied in field-effect transistors with extrinsic operating frequencies in the hundreds-of-gigahertz range. Although the quality of EG grown on SiC has improved, there are still obstacles, such as low carrier mobility and large-area thickness nonuniformity, that limit applications in a wide range of truly wafer-scale technologies. In this article, key elements of epitaxial graphene synthesis are highlighted and discussed with regard to impacts on large-area uniformity, structure, and electrical properties. The effects of specific components such as growth-reactor design and substrate quality are examined in an effort to provide a pathway for future advancements in EG production. Finally, key future directions for research in EG are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

First, P.N., de Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A., Moon, J.S., MRS Bull. 35, 296 (2010).CrossRefGoogle Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
Xing, G., Guo, H., Zhang, X., Sum, T.C., Huan, C.H.A., Opt. Express 18, 4564 (2010).CrossRefGoogle Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C., Nat. Photonics 4, 611 (2010).CrossRefGoogle Scholar
Young, A.F., Kim, P., Nat. Phys. 5, 222 (2009).CrossRefGoogle Scholar
van der Zande, A.M., Barton, R.A., Alden, J.S., Ruiz-Vargas, C.S., Whitney, W.S., Pham, P.H.Q., Park, J., Parpia, J.M., Craighead, H.G., McEuen, P.L., Nano Lett. 10, 4869 (2010).CrossRefGoogle Scholar
Wang, H., Nezich, D., Kong, J., Palacios, T., IEEE Electron Device Lett. 30, 547 (2009).CrossRefGoogle Scholar
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., van Wees, B.J., Nature 448, 571 (2007).CrossRefGoogle Scholar
Champlain, J.G., J. Appl. Phys. 109, 084515 (2011).CrossRefGoogle Scholar
Acheson, E., “Production of Artificial Crystalline Carbonaceous Materials,” US Patent 492,767 (28 February 1893).Google Scholar
“Edward Acheson: Carborundum” (Massachusetts Institute of Technology, Cambridge, MA), web.mit.edu/invent/iow/acheson.html (accessed June 2012).Google Scholar
Van Bommel, A.J., Crombeen, J.E., Van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
Forbeaux, I., Themlin, J.M., Debever, J.M., Phys. Rev. B: Condens. Matter Mater. Phys. 58, 16396 (1998).CrossRefGoogle Scholar
Charrier, A., Coati, A., Argunova, T., Thibaudau, F., Garreau, Y., Pinchaux, R., Forbeaux, I., Debever, J.M., Sauvage-Simkin, M., Themlin, J.M., J. Appl. Phys. 92, 2479 (2002).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Gaskill, D.K., Nyakiti, L.O., in Graphene Nanoelectronics. From Material to Circuits, Murali, R., Ed. (Springer, New York, 2012), pp. 137165.CrossRefGoogle Scholar
Garces, N.Y., Wheeler, V.D., Gaskill, D.K., J. Vac. Sci. Technol. B 30, 030801 (2012).CrossRefGoogle Scholar
Moon, J.-S., Gaskill, D.K., IEEE Trans. Microwave Theory Tech. 59, 2702 (2011).CrossRefGoogle Scholar
Moon, J.S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., VanMil, B., Myers-Ward, R., Eddy, C. Jr., Gaskill, D.K., IEEE Electron Device Lett. 30, 650 (2009).CrossRefGoogle Scholar
Lin, Y.M., Farmer, D.B., Jenkins, K.A., Wu, Y., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R. Jr., Gaskill, D.K., Dimitrakopoulos, C., Avouris, P., IEEE Electron Device Lett. 32, 1343 (2011).CrossRefGoogle Scholar
Lin, Y.M., Valdes-Garcia, A., Han, S.J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K.A., Science 332, 1294 (2011).CrossRefGoogle Scholar
Hwang, W.S., Tahy, K., Nyakiti, L.O., Wheeler, V.D., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K., Xing, H.G., Seabaugh, A., Jena, D., J. Vac. Sci. Technol. B 30, 03D104 (2012).CrossRefGoogle Scholar
Hite, J.K., Twigg, M.E., Tedesco, J.L., Friedman, A.L., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K., Nano Lett. 11, 1190 (2011).CrossRefGoogle Scholar
Masri, P., Surf. Sci. Rep. 48, 1 (2002).CrossRefGoogle Scholar
VanMil, B.L., Myers-Ward, R.L., Tedesco, J.L., Eddy, C.R. Jr., Jernigan, G.G., Culbertson, J.C., Campbell, P.M., McCrate, J.M., Kitt, S.A., Gaskill, D.K., Mater. Sci. Forum 615617, 211 (2009).CrossRefGoogle Scholar
Eddy, C.R., Gaskill, D.K., Science 324, 1398 (2009).CrossRefGoogle ScholarPubMed
“Cree Demonstrates High Quality 150-mm Silicon Carbide Substrates” (Press Release, Cree, Inc., Durham, NC, 30 August 2010).Google Scholar
Ohta, T., Bartelt, N.C., Nie, S., Thürmer, K., Kellogg, G.L., Phys. Rev. B: Condens. Matter Mater. Phys. 81, 121411(R) (2010).CrossRefGoogle Scholar
Ostler, M., Speck, F., Gick, M., Seyller, T., Phys. Status Solidi B 247, 2924 (2010).CrossRefGoogle Scholar
Bolen, M.L., Harrison, S.E., Biedermann, L.B., Capano, M.A., Phys. Rev. B 80, 115433 (2009).CrossRefGoogle Scholar
Robinson, J.A., Wetherington, M., Tedesco, J.L., Campbell, P.M., Weng, X., Stitt, J., Fanton, M.A., Frantz, E., Snyder, D., VanMil, B.L., Jernigan, G.G., Myers-Ward, R.L., Eddy, C.R. Jr., Gaskill, D.K., Nano Lett. 9, 2873 (2009).CrossRefGoogle Scholar
Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D., Phys. Rev. B: Condens. Matter Mater. Phys. 77, 155303 (2008).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G., Solid State Commun. 143, 92 (2007).CrossRefGoogle Scholar
Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Neto, A.H.C., Lanzara, A., Nat. Mater. 6, 770 (2007).CrossRefGoogle Scholar
Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B.N., Naud, C., Mallet, P., Veuillen, J.Y., Berger, C., Conrad, E.H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).CrossRefGoogle Scholar
Tedesco, J.L., VanMil, B.L., Myers-Ward, R.L., McCrate, J.M., Kitt, S.A., Campbell, P.M., Jernigan, G.G., Culbertson, J.C., Eddy, C.R., Gaskill, D.K., Appl. Phys. Lett. 95, 122102 (2009).CrossRefGoogle Scholar
Tedesco, J.L., Jernigan, G.G., Culbertson, J.C., Hite, J.K., Yang, Y., Daniels, K.M., Myers-Ward, R.L., Eddy, C.R., Robinson, J.A., Trumbull, K.A., Wetherington, M.T., Campbell, P.M., Gaskill, D.K., Appl. Phys. Lett. 96, 222103 (2010).CrossRefGoogle Scholar
Hass, J., de Heer, W.A., Conrad, E.H., J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
Prakash, G., Bolen, M.L., Colby, R., Stach, E.A., Capano, M.A., Reifenberger, R., New J. Phys. 12, 125009 (2010).CrossRefGoogle Scholar
Borysiuk, J., Soltys, J., Piechota, J., J. Appl. Phys. 109, 093523 (2011).CrossRefGoogle Scholar
Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., Berger, C., Appl. Phys. Lett. 89, 143106 (2006).CrossRefGoogle Scholar
Lin, Y.M., Dimitrakopoulos, C., Farmer, D.B., Han, S.J., Wu, Y.Q., Zhu, W.J., Gaskill, D.K., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R., Grill, A., Avouris, P., Appl. Phys. Lett. 97, 112107 (2010).CrossRefGoogle Scholar
Sidorov, A.N., Gaskill, D.K., Nardelli, M.B., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R. Jr., Jayasekera, T., Kim, H.K.W., Jayasingha, R., Sherehiy, A., Stallard, R., Sumanasekera, G.U., J. Appl. Phys. 111, 113706 (2012).CrossRefGoogle Scholar
Jernigan, G.G., VanMil, B.L., Tedesco, J.L., Tischler, J.G., Glaser, E.R., Davidson, A., Campbell, P.M., Gaskill, D.K., Nano Lett. 9, 2605 (2009).CrossRefGoogle Scholar
Sun, D., Divin, C., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 104, 136802 (2010).CrossRefGoogle Scholar
Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M., Phys. Rev. Lett. 101, 267601 (2008).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRefGoogle Scholar
de Heer, W.A., MRS Bull. 36, 632 (2011).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
Langmuir, I., Phys. Rev. (Ser. I) 34, 401 (1912).CrossRefGoogle Scholar
Fonda, G.R., Phys. Rev. 31, 260 (1928).CrossRefGoogle Scholar
Tedesco, J.L., VanMil, B.L., Myers-Ward, R.L., Culbertson, J.C., Jernigan, G.G., Campbell, P.M., McCrate, J.M., Kitt, S.A., Eddy, C.R. Jr., Gaskill, D.K., ECS Trans. 19 (5), 137 (2009).CrossRefGoogle Scholar
Gaskill, D.K., Jernigan, G.G., Campbell, P.M., Tedesco, J.L., Culbertson, J.C., VanMil, B.L., Myers-Ward, R.L., Eddy, C.R. Jr., Moon, J., Curtis, D., Hu, M., Wong, D., McGuire, C., Robinson, J.A., Fanton, M.A., Stitt, J.P., Stitt, T., Snyder, D., Wang, X., Frantz, E., ECS Trans. 19 (5), 117 (2009).CrossRefGoogle Scholar
Lilov, S.K., Cryst. Res. Technol. 28, 503 (1993).CrossRefGoogle Scholar
Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E., Rev. Mod. Phys. 83, 407 (2011).CrossRefGoogle Scholar
Robinson, J.A., Trumbull, K.A., LaBella, M. III, Cavalero, R., Hollander, M.J., Zhu, M., Wetherington, M.T., Fanton, M., Snyder, D.W., Appl. Phys. Lett. 98, 222109 (2011).CrossRefGoogle Scholar
Yakes, M.K., Gunlycke, D., Tedesco, J.L., Campbell, P.M., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K., Sheehan, P.E., Laracuente, A.R., Nano Lett. 10, 1559 (2010).CrossRefGoogle Scholar
“SiC Hot-Wall Reactor” (Aixtron, Herzogenrath, Germany, 2012), www.aixtron.com/index.php?id=790&L=1 (accessed June 2012).Google Scholar
Moon, J.S., Curtis, D., Hu, M., Wong, D., Campbell, P.M., Jernigan, G., Tedesco, J., VanMil, B., Myers-Ward, R., Eddy, C.R. Jr., Gaskill, D.K., Robinson, J., Fanton, M., Asbeck, P., ECS Trans. 19 (5), 35 (2009).CrossRefGoogle Scholar
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P., Science 327, 662 (2010).CrossRefGoogle Scholar
Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
Zhang, W., Lin, C., Liu, K., Tite, T., Su, C., Chang, C., Lee, Y., Chu, C.W., Wei, K.H., Kuo, J.L., Jong, L., ACS Nano 5, 7517 (2011).CrossRefGoogle Scholar
Nyakiti, L.O., Myers-Ward, R.L., Wheeler, V.D., Imhoff, E.A., Bezares, F.J., Hayden, C., Caldwell, J.D., Friedman, A.L., Matis, B.R., Baldwin, J.W., Campbell, P.M., Culbertson, J.C., Eddy, C.R. Jr., Jernigan, G.G., Gaskill, D.K., Nano Lett. 12, 1749 (2012).CrossRefGoogle Scholar
Bolen, M.L., Colby, R., Stach, E.A., Capano, M.A., J. Appl. Phys. 110, 074307 (2011).CrossRefGoogle Scholar
Speck, F., Jobst, J., Fromm, F., Ostler, M., Waldmann, D., Hundhausen, M., Weber, H.B., Seyller, T., Appl. Phys. Lett. 99, 122106 (2011).CrossRefGoogle Scholar
Daas, B.K., Daniels, K., Shetu, S., Sudarshan, T.S., Chandrashekhar, M.V.S., Cryst. Growth Des. 12, 3379 (2012).CrossRefGoogle Scholar
Ouerghi, A., Marangolo, M., Belkhou, R., El Moussaoui, S., Silly, M.G., Eddrief, M., Largeau, L., Portail, M., Fain, B., Sirotti, F., Phys. Rev. B 82, 125445 (2010).CrossRefGoogle Scholar
Hass, J., Varchon, F., Millan-Otoya, J.E., Sprinkle, M., Sharma, N., de Heer, W.A., Berger, C., First, P.N., Magaud, L., Conrad, E.H., Phys. Rev. Lett. 100, 125504 (2008).CrossRefGoogle Scholar
Wu, X., Hu, Y., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A., Appl. Phys. Lett. 95, 223108 (2009).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).CrossRefGoogle Scholar
Virojanadara, C., Watcharinyanon, S., Zakharov, A.A., Johansson, L.I., Phys. Rev. B 82, 205402 (2010).CrossRefGoogle Scholar
Sugawara, K., Kanetani, K., Sato, T., Takahashi, T., AIP Adv. 1, 022103 (2011).CrossRefGoogle Scholar
Wong, S.L., Huang, H., Wang, Y., Cao, L., Qi, D., Santoso, I., Chen, W., Wee, A.T.S., ACS Nano 5, 7662 (2011).CrossRefGoogle Scholar
Walter, A.L., Jeon, K.-J., Bostwick, A., Speck, F., Ostler, M., Seyller, T., Moreschini, L., Kim, Y.S., Chang, Y.J., Horn, K., Rotenberg, E., Appl. Phys. Lett. 98, 184102 (2011).CrossRefGoogle Scholar
Lin, Y.M., Jenkins, K., Farmer, D., Valdes-Garcia, A., Avouris, P., Sung, C.-Y., Chiu, H.-Y., Ek, B., in 2009 IEEE International Electron Devices Meeting (IEDM) (IEEE Press, Piscataway, NJ, 2009), pp. 10.2.1–10.2.4.Google Scholar