Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T15:53:46.813Z Has data issue: false hasContentIssue false

Electronic properties of transition-metal dichalcogenides

Published online by Cambridge University Press:  13 July 2015

Agnieszka Kuc
Affiliation:
Jacobs University Bremen, Germany; [email protected]
Thomas Heine
Affiliation:
Jacobs University Bremen, Germany; [email protected]
Andras Kis
Affiliation:
École Polytechnique Fédérale de Lausanne, Switzerland; [email protected]
Get access

Abstract

Graphene is not the only prominent example of two-dimensional (2D) materials. Due to their interesting combination of high mechanical strength and optical transparency, direct bandgap and atomic scale thickness transition-metal dichalcogenides (TMDCs) are an example of other materials that are now vying for the attention of the materials research community. In this article, the current state of quantum-theoretical calculations of the electronic and mechanical properties of semiconducting TMDC materials are presented. In particular, the intriguing interplay between external parameters (electric field, strain) and band structure, as well as the basic properties of heterostructures formed by vertical stacking of different 2D TMDCs are reviewed. Electrical measurements of MoS2, WS2, and WSe2 and their heterostructures, starting from simple field-effect transistors to more demanding logic circuits, high-frequency transistors, and memory devices, are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuc, A., Heine, T., Chem. Soc. Rev. (2014), doi, 10.1039/C4CS00276H.Google Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Rev. Mod. Phys. 83, 837 (2011).CrossRefGoogle Scholar
Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
Xia, F., Farmer, D.B., Lin, Y., Avouris, P., Nano Lett. 10, 715 (2010).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Wypych, F., Schollhorn, R., J. Chem. Soc. Chem. Commun. 19, 1386 (1992).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRefGoogle Scholar
Benameur, M.M., Radisavljevic, B., Heron, J.S., Sahoo, S., Berger, H., Kis, A., Nanotechnology 22, 125706 (2011).CrossRefGoogle Scholar
Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V., Science 331, 568 (2011).CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.-C., Ajayan, P.M., Lou, J., Nat. Mater. 12, 754 (2013).CrossRefGoogle Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.-H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 12, 554 (2013).CrossRefGoogle Scholar
Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A., Science 335, 947 (2012).CrossRefGoogle Scholar
Wilson, J.A., Yoffe, A.D., Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
Frindt, R.F., Yoffe, A.D., Proc. R. Soc. Lond. A 273, 69 (1963).Google Scholar
Joensen, P., Frindt, R.F., Morrison, S.R., Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
Kam, K.K., Parkinson, B.A., J. Phys. Chem. 86, 463 (1982).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Kuc, A., Zibouche, N., Heine, T., Phys. Rev. B Condens. Matter 83, 245213 (2011).CrossRefGoogle Scholar
Li, T., Galli, G., J. Phys. Chem. C 111, 16192 (2007).CrossRefGoogle Scholar
Liu, L., Kumar, S.B., Ouyang, Y., Guo, J., IEEE Trans. Electron Devices 58, 3042 (2011).CrossRefGoogle Scholar
Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., Tang, W., Physica B 406, 2254 (2011).CrossRefGoogle Scholar
Ataca, C., Şahin, H., Ciraci, S., J. Phys. Chem. C 116, 8983 (2012).CrossRefGoogle Scholar
Acc. Chem. Res. 48, 1 (2015).Google Scholar
Staley, N.E., Wu, J., Eklund, P., Liu, Y., Li, L., Xu, Z., Phys. Rev. B Condens. Matter 80, 184505 (2009).CrossRefGoogle Scholar
Ali, M.N., Xiong, J., Flynn, S., Tao, J., Gibson, Q.D., Schoop, L.M., Liang, T., Haldolaarachchige, N., Hirschberger, M., Ong, N.P., Cava, R.J., Nature 514, 205 (2014).CrossRefGoogle Scholar
Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., Grossman, J.C., Wu, J., Nano Lett. 12, 5576 (2012).CrossRefGoogle Scholar
Hwang, W.S., Remskar, M., Yan, R., Protasenko, V., Tahy, K., Chae, S.D., Zhao, P., Konar, A., Xing, H., Seabaugh, A., Jena, D., Appl. Phys. Lett. 101, 013107 (2012).CrossRefGoogle Scholar
Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., Nano Lett. 12, 3788 (2012).CrossRefGoogle Scholar
Liu, W., Kang, J., Sarkar, D., Khatami, Y., Jena, D., Banerjee, K., Nano Lett. 13, 1983 (2013).CrossRefGoogle Scholar
Miró, P., Audiffred, M., Heine, T., Chem. Soc. Rev. 43, 6537 (2014).CrossRefGoogle Scholar
Tongay, S., Sahin, H., Ko, C., Luce, A., Fan, W., Liu, K., Zhou, J., Huang, Y.-S., Ho, C.-H., Yan, J., Ogletree, D.F., Aloni, S., Ji, J., Li, S., Li, J., Peeters, F.M., Wu, J.., Nat. Commun. 5, 3252 (2014).CrossRefGoogle Scholar
Yang, S., Tongay, S., Yue, Q., Li, Y., Li, B., Lu, F., Sci. Rep. 4, 5442 (2014).CrossRefGoogle Scholar
Heine, T., Acc. Chem. Res. 48, 65 (2015).CrossRefGoogle Scholar
Miro, P., Audiffred, M., Heine, T., Chem. Soc. Rev. 43, 6537 (2014).CrossRefGoogle Scholar
Miro, P., Ghorbani-Asl, M., Heine, T., Angew. Chem. Int. Ed. 53, 3015 (2014).CrossRefGoogle Scholar
Zhu, Z.Y., Cheng, Y.C., Schwingenschlögl, U., Phys. Rev. B Condens. Matter 84, 153402 (2011).CrossRefGoogle Scholar
Zibouche, N., Kuc, A., Musfeldt, J., Heine, T., Ann. Phys. 526, 395 (2014).CrossRefGoogle Scholar
Zibouche, N., Philipsen, P., Kuc, A., Heine, T., Phys. Rev. B Condens. Matter 90, 125440 (2014).CrossRefGoogle Scholar
Zibouche, N., Philipsen, P., Heine, T., Kuc, A., Phys. Chem. Chem. Phys. 16, 11251 (2014).CrossRefGoogle Scholar
Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D., Tenne, R., Proc. Natl. Acad. Sci. U.S.A. 103, 523 (2006).CrossRefGoogle Scholar
Ghorbani-Asl, M., Borini, S., Kuc, A., Heine, T., Phys. Rev. B Condens. Matter 87, 235434 (2013).CrossRefGoogle Scholar
Ghorbani-Asl, M., Zibouche, N., Wahiduzzaman, M., Oliveira, A.F., Kuc, A., Heine, T., Sci. Rep. 3, 2961, (2013).CrossRefGoogle Scholar
Lorenz, T., Ghorbani-Asl, M., Joswig, J.-O., Heine, T., Seifert, G., Nanotechnology 25, 445201 (2014).CrossRefGoogle Scholar
Plechinger, G., Castellanos-Gomez, A., Buscema, M., van der Zant, H., Steele, G., Kuc, A., Heine, T., Schüller, C., Korn, T., 2D Mater. (2015) (forthcoming).Google Scholar
He, K., Poole, C., Mak, K.F., Shan, J., Nano Lett. 13, 2931 (2013).CrossRefGoogle Scholar
Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., Bolotin, K.I., Nano Lett. 13, 3626 (2013).CrossRefGoogle Scholar
Tongay, S., Suh, J., Ataca, C., Fan, W., Luce, A., Kang, J.S., Liu, J., Ko, C., Raghunathanan, R., Zhou, J., Ogletree, F., Li, J., Grossman, J.C., Wu, J., Sci. Rep. 3, 2657, (2013).CrossRefGoogle Scholar
Ghorbani-Asl, M., Enyashin, A.N., Kuc, A., Seifert, G., Heine, T., Phys. Rev. B Condens. Matter 88, 245440 (2013).CrossRefGoogle Scholar
Qiu, H., Xu, T., Wang, Z., Ren, W., Nan, H., Ni, Z., Chen, Q., Yuan, S., Miao, F., Song, F., Long, G., Shi, Y., Sun, L., Wang, J., Wang, X., Nat. Commun. 4, 2642, (2013).CrossRefGoogle Scholar
Brivio, J., Alexander, D.T.L., Kis, A., Nano Lett. 11, 5148 (2011).CrossRefGoogle Scholar
Miro, P., Ghorbani-Asl, M., Heine, T., Adv. Mater. 25, 5473 (2013).CrossRefGoogle Scholar
International Technology Roadmap for Semiconductors (2011), http://www.itrs.net/.Google Scholar
Radisavljevic, B., Kis, A., Nat. Mater. 12, 815 (2013).CrossRefGoogle Scholar
Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W., Phys. Rev. B Condens. Matter 85, 115317 (2012).CrossRefGoogle Scholar
Kaasbjerg, K., Thygesen, K.S., Jauho, A.-P., Phys. Rev. B Condens. Matter 87, 235312 (2013).CrossRefGoogle Scholar
Ong, Z.-Y., Fischetti, M.V., Phys. Rev. B Condens. Matter 88, 165316 (2013).CrossRefGoogle Scholar
Jariwala, D., Sangwan, V.K., Late, D.J., Johns, J.E., Dravid, V.P., Marks, T.J., Lauhon, L.J., Hersam, M.C., Appl. Phys. Lett. 102, 173107 (2013).CrossRefGoogle Scholar
Baugher, B., Churchill, H.O.H., Yang, Y., Jarillo-Herrero, P., Nano Lett. 13, 4212 (2013).CrossRefGoogle Scholar
Xie, X., Sarkar, D., Liu, W., Kang, J., Marinov, O., Deen, M.J., Banerjee, K., ACS Nano 8, 5633 (2014).CrossRefGoogle Scholar
Zhu, W., Low, T., Lee, Y.-H., Wang, H., Farmer, D.B., Kong, J., Xia, F., Avouris, P., Nat. Commun. 5, 3087 (2014).CrossRefGoogle Scholar
Krasnozhon, D., Lembke, D., Nyffeler, C., Leblebici, Y., Kis, A., Nano Lett. 14, 5905 (2014).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
Neal, A.T., Liu, H., Gu, J.J., Ye, P.D., Proc. 2012 70th Ann. Dev. Res. Conf. (DRC) (2012), p. 65CrossRefGoogle Scholar
Popov, I., Seifert, G., Tománek, D., Phys. Rev. Lett. 108, 156802 (2012).CrossRefGoogle Scholar
Das, S., Chen, H.-Y., Penumatcha, A.V., Appenzeller, J., Nano Lett. 13, 100 (2013).CrossRefGoogle Scholar
Kang, J., Liu, W., Sarkar, D., Jena, D., Banerjee, K., Phys. Rev. X 4, 031005 (2014).Google Scholar
Kang, J., Liu, W., Banerjee, K., Appl. Phys. Lett. 104, 233502 (2014).Google Scholar
Kiriya, D., Tosun, M., Zhao, P., Kang, J.S., Javey, A., J. Am. Chem. Soc. 136, 7853 (2014).CrossRefGoogle Scholar
Yang, L., Majumdar, K., Liu, H., Du, Y., Wu, H., Hatzistergos, M., Hung, P.Y., Tieckelmann, R., Tsai, W., Hobbs, C., Ye, P.D., Nano Lett. (2014), available at http://arxiv.org/pdf/1410.8201.Google Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 13, 1128 (2014).CrossRefGoogle Scholar
Ye, J.T., Zhang, Y.J., Akashi, R., Bahramy, M.S., Arita, R., Iwasa, Y., Science 338, 1193 (2012).CrossRefGoogle Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., Zhang, H., ACS Nano 6, 74 (2012).CrossRefGoogle Scholar
Lee, H.S., Min, S.-W., Chang, Y.-G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., Im, S., Nano Lett. 12, 3695 (2012).CrossRefGoogle Scholar
Allain, A., Kis, A., ACS Nano 8, 7180 (2014).CrossRefGoogle Scholar
Jo, S., Ubrig, N., Berger, H., Kuzmenko, A.B., Morpurgo, A.F., Nano Lett. 14, 2019 (2014).CrossRefGoogle Scholar
Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.-J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., Mishchenko, A., Nat. Nanotechnol. 8, 100 (2013).CrossRefGoogle Scholar
Bertolazzi, S., Krasnozhon, D., Kis, A., ACS Nano 7, 3246 (2013).CrossRefGoogle Scholar
Roy, T., Tosun, M., Kang, J.S., Sachid, A.B., Desai, S.B., Hettick, M., Hu, C.C., Javey, A., ACS Nano 8, 6259 (2014).CrossRefGoogle Scholar
Radisavljevic, B., Whitwick, M.B., Kis, A., ACS Nano 5, 9934 (2011).CrossRefGoogle Scholar
Radisavljevic, B., Whitwick, M.B., Kis, A., Appl. Phys. Lett. 101, 043103 (2012).CrossRefGoogle Scholar
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M.L., Li, L.-J., Dubey, M., Kong, J., Palacios, T., Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
Tosun, M., Chuang, S., Fang, H., Sachid, A.B., Hettick, M., Lin, Y., Zeng, Y., Javey, A., ACS Nano 8, 4948 (2014).CrossRefGoogle Scholar
Bertolazzi, S., Brivio, J., Kis, A., ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
Griffith, A., Philos. Trans. R. Soc Lond. A 221, 163 (1920).Google Scholar
Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H.S.J., Steele, G.A., Venstra, W.J., Adv. Mater. 25, 6719 (2013).CrossRefGoogle Scholar
Pu, J., Yomogida, Y., Liu, K.-K., Li, L.-J., Iwasa, Y., Takenobu, T., Nano Lett. 12, 4013 (2012).CrossRefGoogle Scholar
Chang, H.-Y., Yang, S., Lee, J., Tao, L., Hwang, W.-S., Jena, D., Lu, N., Akinwande, D., ACS Nano 7, 5446 (2013).CrossRefGoogle Scholar
Lee, G.-H.Yu, Y.-J., Cui, X., Petrone, N., Lee, C.-H., Choi, M.S., Lee, D.-Y., Lee, C., Yoo, W.J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P., Hone, J., ACS Nano 7, 7931 (2013).CrossRefGoogle Scholar