Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T03:36:46.677Z Has data issue: false hasContentIssue false

Electron Emission From Diamond Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Diamond always has been considered an exciting material. In addition to its other outstanding properties, diamond's capacity for cold electron emission has become a “hot” topic of research in recent years. The electron emission from diamond films is important for both fundamental and applied purposes, which may be expressed by two questions as follows: “Why does diamond emit electrons?” and “How can an efficient cold cathode be made?”

The “diamond-emission era” started in 1991. That year three papers were published, reporting unexpectedly high electron emissivity from diamond. The first paper by Djubua and Chubun was very practical, having been written by device engineers. They tried different materials for the fabrication of pointed field emission cathodes and found that emitters made from diamondlike carbon (DLC) demonstrated a lower emission threshold compared to other materials. A second paper by Wang et al. reported a low emission threshold for chemical-vapor-deposition (CVD) diamond films, whereas a third paper by Geis et al. described the fabrication and operation of diamond cold cathodes.

Since 1991 hundreds of papers about electron emission from diamond and diamondlike materials have been published. The motivations for this increasing activity are prospective applications in vacuum microelectronics—that is, vacuum emission devices fabricated by modern microelectronic technologies. Experts expect that combining the physical advantages of emission devices and the technological progress in solid-state microelectronics will result in the development of an entirely new generation of high-performance electronic devices—among them, flat-panel displays and miniature microwave tubes.

Type
Diamond Films: Recent Developments
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Djubua, B.C. and Chubun, N.N., IEEE Trans Electron Devices 38 (10) (1991) p. 2314.CrossRefGoogle Scholar
2.Wang, C., Garcia, A., Ingram, D.C., and Kordesh, M.E., Electron. Lett. 27 (16) (1991) p. 1459.CrossRefGoogle Scholar
3.Geis, M.W., Efremov, N.N., Woodhouse, J.D., McAleese, M.D., Marchywka, M., Socker, D.G., and Hochedez, J.F., IEEE Electron Device Lett 12 (8) (1991) p. 456.CrossRefGoogle Scholar
4.Himpsel, F.J., Knapp, J.A., VanVechten, J.A., and Eastman, D.E., Phys. Rev. B 20 (1979) p. 62Google Scholar
5.Jaskie, J.E., MRS Bulletin 21 (3) (1996) p. 59.CrossRefGoogle Scholar
6.Mackie, W.A., Plumlee, J.E., and Bell, A.E., J. Vac. Sci. Technol. B 14 (1996) p. 2401.Google Scholar
7.Bendorf, C., Hadenfeldt, S., Luithardt, W., and Zhukov, A., Diamond Rel. Mater. 5 (1996) p. 784.CrossRefGoogle Scholar
8.Brandes, G.R., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G., and Bigelow, L.K. (Marcel Dekker, New York, 1998) p. 1103.Google Scholar
9.Choi, W.B., Cuomo, J.J., Zhirnov, V.V., Myers, A.F., and Hren, J.J., Appl. Phys. Lett. 68 (1996); V.V. Zhirnov, W.B. Choi, J.J. Cuomo, and J.J. Hren, Appl. Surf. Sci. 94/95 (1996) p. 123.Google Scholar
10.Geis, M.W., Twichell, J.C., and Lyszczarz, T.M., J. Vac. Sci. Technol. B 14 (1996) p. 2060.CrossRefGoogle Scholar
11.Bachmann, P.K. and Wiechert, D.U., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Koidl, P. (Plenum Press, New York, 1991) p. 677.CrossRefGoogle Scholar
12.Xie, C., Kumar, N., Collins, C.B., Lee, T.J., Schmidt, H.K., and Wagal, S., Tech. Digest of 6th Int. Vacuum Microelectronics Conf. (Newport, RI 1993).Google Scholar
13.Zhu, W., Kochanski, G.P., Jin, S., Seibles, L., Jacobson, D.C., McComack, M., and White, A.E., Appl. Phys. Lett. 67 (1995) p. 1157.CrossRefGoogle Scholar
14.Weiss, B.L., Badzian, A., Pilione, L., Badzian, T., and Drawl, W., Tech. Digest of 10th Int. Vacuum Microelectronics Conf. (Kyongju, Korea, 1997) p. 103.Google Scholar
15.Amaratunga, G.A.J. and Silva, S.R.P., Appl. Phys. Lett. 68 (1996) p. 2529.CrossRefGoogle Scholar
16.Okano, K., Koizumi, S., Ravi, S., Silva, P., and Amaratunga, G.A.J., Nature 389 (1996) p. 140.CrossRefGoogle Scholar
17.Blyablin, A.A., Kandidov, A.V., Pilevskii, A.A., Rakhimov, A.T., Samorodov, V.A., Seleznev, B.V., Suetin, N.V., and Timofeev, M.A., 11th Int. Vacuum Microelectronics Conf. (Asheville, 1998).Google Scholar
18.Zhirnov, V.V., Givargizov, E.I., Kandidov, A.V., Seleznev, B.V., and Alimova, A.N., J. Vac. Sci. Technol. B 15 (1997) p. 446.CrossRefGoogle Scholar
19.Geis, M.W., Twichell, J.C., Efremov, N.N., Krohn, K., and Lyszczarz, T.M., Appl. Phys. Lett. 68 (1996) p. 2294.CrossRefGoogle Scholar
20.Zhirnov, V.V., Voronin, A.B., Givargizov, E.I., and Meshcheryakova, A.L., J. Vac. Sci. Technol. B 14(1996) p. 2034.CrossRefGoogle Scholar
21.Zhirnov, V.V., Givargizov, E.I., Chubun, N.N., and Stepanova, A.N., Tech. Digest of 10th Int. Vacuum Microelectronics Conf. (Kyongju, Korea, 1997) p. 490.Google Scholar
22.Givargizov, E.I., Zhirnov, V.V., Chubun, N.N., and Voronin, A.B., J. Vac. Sci. Technol. B 15 (2) (1997) p. 442.CrossRefGoogle Scholar
23.Feist, W.M., “Cold Electron Emitters,” in Adv. Electron, and Electron Phys., Suppl. 4 (1968) p. 1.Google Scholar
24.Zhirnov, V.V., J. Phys. IV France 6-C5 (1996) p. 107.CrossRefGoogle Scholar
25.Latham, R.V., High Voltage Vacuum Insulation: The Physical Basis (Academic Press, New York, 1981).Google Scholar
26.Huang, Z-H., Cutler, P.H., Miskovsky, N.M, and Sullivan, T.E., Appl. Phys. Lett. 65 (1994) p. 2562.CrossRefGoogle Scholar
27.Givargizov, E.I., Zhirnov, V.V., Kuznetsov, A.V., and Plekhanov, P.S., J. Vac. Sci. Technol. B 14 (1996) p. 2030.CrossRefGoogle Scholar
28.Zhirnov, V.V., Givargizov, E.I., and Plekhanov, P.S., J. Vac. Sci. Technol. 13 (1995) p. 418.CrossRefGoogle Scholar
29.Groening, O., Kuettel, O.M., Schaller, E., Groening, P., and Schlapbach, L., Appl. Phys. Lett. 69 (1996) p. 476.CrossRefGoogle Scholar
30.Liu, J., Zhirnov, V.V., Choi, W.B., Wojak, G.J., Myers, A.F., Cuomo, J.J., and Hren, J.J., Appl. Phys. Lett. p. 4038.Google Scholar
31.Kuettel, O.M., Groening, D., and Schlapbach, L., J. Vac. Sci. and Technol. Adv. in press.Google Scholar
32.Schlesser, R., McClure, M.T., McCarson, B.L., and Sitar, Z., J. Appl. Phys. 82 (1997) p. 5763.CrossRefGoogle Scholar
33.Jaskie, J.E. and Kane, R.C., U.S. Patent No. 5,141,460 (1992).Google Scholar
34.Kumar, N., U.S. Patent No. 5,199,918 (1993).Google Scholar
35.Givargizov, E.I., Zhirnov, V.V., Stepanova, A.N., and Obolenskaya, L.N., Russia Patent No. 2,074,444 (1994).Google Scholar
36.Hong, D. and Aslam, D., 8th Int. Vacuum Microelectronics Conf. (Portland, OR, 1995) p. 335.Google Scholar
37.Zhirnov, V.V., Wojak, G.J., Choi, W.B., Cuomo, J.J., and Hren, J.J., J. Vac. Sci. Technol. A 15 (1997) p. 1733.CrossRefGoogle Scholar