Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T01:39:18.705Z Has data issue: false hasContentIssue false

Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In materials that conduct both electricity and heat, the thermal and electrical currents are coupled. This thermoelectric coupling can be used to construct devices that act as temperature sensors, heat pumps, refrigerators, or power generators. A temperature difference ΔT across any electrical conductor will generate a corresponding voltage difference ΔV The ratio ΔVT is defined as the Seebeck coefficient S after Thomas See-beck who first discovered the effect in 1823. Probably the most familiar use of this effect is the thermocouple in which the union of two dissimilar metals generates a voltage in response to an imposed temperature difference. Interestingly an electrical current I passing through the junction of two dissimilar conductors results in the absorption or release of heat in the vicinity of the junction depending on the direction of the current. The ability to heat or cool in this manner was first discovered by Peltier and explained by Lord Kelvin. The latter showed that the amount of heat produced (or absorbed) near the junction is given by ΠI = STI where Π is called the Peltier coefficient and T is the temperature. It is primarily this effect that makes thermoelectric (Peltier) refrigeration possible. Thermoelectric refrigerators and power generators are attractive for many applications as they have no moving parts (except electrons and holes), use no liquid refrigerant, and last indefinitely.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rowe, D.M., ed., CRC Handbook of Thermoelectrics (Chemical Rubber, Boca Raton, FL, 1995).Google Scholar
2.Mahan, G.D., in Solid State Physics, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, Inc., New York, 1997).Google Scholar
3.Wood, C., Rep. Prog. Phys. 51 (1988) p. 459.CrossRefGoogle Scholar
4.Mahan, G.D., Sales, B.C., and Sharp, J.W., Phys. Today (1997) p. 42.CrossRefGoogle Scholar
5.Sales, B.C., Current Opinion in Solid State and Materials Sciences 2 (1997) p. 284.CrossRefGoogle Scholar
6.Slack, G.A., in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (Chemical Rubber, Boca Raton, FL, 1995) p. 407.Google Scholar
7.Slack, G.A., in Solid State Physics, vol. 34, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, Inc., New York, 1979) p. 1.Google Scholar
8.Cahill, D.G., Watson, S.K., and Pohl, R.O., Phys. Rev. B 46 (1992) p. 6131.CrossRefGoogle Scholar
9.Jeitschko, W. and Braun, D.J., Acta Crystallogr. Sec. B 33 (1977) p. 3401.CrossRefGoogle Scholar
10.Braun, D.J. and Jeitschko, W., J. Less-Common Metals 76 (1980) p. 147.CrossRefGoogle Scholar
11.Braun, D.J. and Jeitschko, W., J. Solid Slate Chem. 32 (1980) p. 357.CrossRefGoogle Scholar
12.Braun, D.J. and Jeitschko, W., J. Less-Common Metals 76 (1980) p. 33.CrossRefGoogle Scholar
13.Chakoumakos, B.C., private communication.Google Scholar
14.Stetson, N.T., Kauzlarich, S.M., and Hope, H.. J. Solid State Chem. 91 (1991) p. 140.CrossRefGoogle Scholar
15.DeLong, L.E. and Meisner, G.P., Solid State Commun. 53 (1985) p. 119.CrossRefGoogle Scholar
16.Morelli, D.T. and Meisner, G.P., J. Appl. Phys. 77 (1995) p. 3777.CrossRefGoogle Scholar
17.Meisner, G.P., Torikachvili, M.S., Yang, K.N., Maple, M.B., and Guertin, R.P., J. Appl. Phys. 57 (1985) p. 3073.CrossRefGoogle Scholar
18.Danebrock, M.E., Evers, C.B.H., and Jeitschko, W., J. Phys. Chem. Solids 57 (1996) p. 381.CrossRefGoogle Scholar
19.Meisner, G.P., Physica 108B (1981) p. 763.Google Scholar
20.Zemi, S., Tranqui, D., Chaudouet, P., Madar, R., and Senateur, J.P., J. Solid State Chem. 65 (1986) p. 1.CrossRefGoogle Scholar
21.Shirotani, I., Adachi, T., Tachi, K., Todo, S., Nozawa, K., Yagi, T., and Kinoshita, M., J. Phys. Chem. Solids 57 (1996) p. 211.CrossRefGoogle Scholar
22.Sales, B.C., Mandrus, D., and Williams, R.K., Science 272 (1996) p. 1325.CrossRefGoogle Scholar
23.Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M., and Ehrlich, A.C., J. Appl. Phys. 79 (1996) p. 4002.CrossRefGoogle Scholar
24.Tritt, T.M., Nolas, G.S., Slack, G.A., Ehrlich, A.C., Gillespie, D.J., and Cohn, J.L., J. Appl. Phys. 79 (1996) p. 8412.CrossRefGoogle Scholar
25.Fleurial, J-P., Borshchevsky, A., Caillat, T., Morelli, D.T., and Meisner, G.P., in Proc. 15th Int. Conf. on Thermoelectrics (IEEE, Piscataway, NJ, 1996) p. 91.Google Scholar
26.Chen, B., Xu, J.H., Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J-P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55 (1997) p. 1476.CrossRefGoogle Scholar
27.Mandrus, D., Sales, B.C., Keppens, V., Chakoumakos, B.C., Dai, P., Boatner, L.A., Williams, R.K., Darling, T.W., Migliori, A., Maple, M.B., Gajewski, D.A., and Freeman, E.J., in Thermoelectric Materials: New Directions and Approaches, edited by Tritt, T.M., Mahan, G., Lyon, H.B., and Kanatzidis, M.G. (Mater. Res. Soc. Symp. Proc. 478, Pittsburgh, 1997).Google Scholar
28.Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R., Phys. Rev. B 56 (in press).Google Scholar
29.Keppens, V. (private communication).Google Scholar
30.Sievers, A.J., Phys. Rev. Lett. 13 (1965) p. 310.CrossRefGoogle Scholar
31.Caplin, A.D., Gruner, G., and Dunlap, J.B., Phys. Rev. Lett. 30 (1973) p. 1138.CrossRefGoogle Scholar
32.Nolas, G.S., Slack, G.A., Caillat, T., and Meisner, G.P., J. Appl. Phys. 79 (1996) p. 2622.CrossRefGoogle Scholar
33.Kittel, C., Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1968) p. 186.Google Scholar
34.Goldsmid, H.J., Electronic Refrigeration (Pion Limited, London, 1986) p. 29.Google Scholar
35.Caillat, T., Borshchevsky, A., and Fleurial, J-P., Proc. 11th Int. Conf. on Thermoelectrics, edited by Rao, K.R. (University of Texas Press, Arlington, 1993) p. 98.Google Scholar
36.Sharp, J.W., Jones, E.C., Williams, R.K., Martin, P.M., and Sales, B.C., J. Appl. Phys. 78 (1995) p. 1013.CrossRefGoogle Scholar
37.Singh, D. and Mazin, I.I., Phys. Rev. B 56 (1997) p. 1650.CrossRefGoogle Scholar