Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T07:13:49.741Z Has data issue: false hasContentIssue false

Electrocaloric effects in multilayer capacitors for cooling applications

Published online by Cambridge University Press:  11 April 2018

Xavier Moya
Affiliation:
Department of Materials Science, University of Cambridge, UK; [email protected]
Emmanuel Defay
Affiliation:
Luxembourg Institute of Science and Technology, Luxembourg; [email protected]
Neil D. Mathur
Affiliation:
Department of Materials Science, University of Cambridge, UK; [email protected]
Sakyo Hirose
Affiliation:
Murata Manufacturing Co., Ltd., Japan; [email protected]
Get access

Abstract

For more than a century, humankind has achieved refrigeration by exploiting volatile gases that harm the environment when released to the atmosphere. More recently, the observation of electrocaloric effects in commercial multilayer capacitors has inspired the possibility of environmentally friendly cooling. In this article, we describe electrocaloric effects in multilayer capacitors for cooling applications, compare the electrocaloric performance of existing multilayer capacitors, and discuss the improvements required for practical cooling devices.

Type
Caloric Effects in Ferroic Materials
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moya, X., Kar-Narayan, S., Mathur, N.D., Nat. Mater. 13, 439 (2014).CrossRefGoogle Scholar
Correia, T., Zhang, Q., Eds., Electrocaloric Materials (Springer-Verlag, Berlin, 2014).CrossRefGoogle Scholar
Lu, S.G., Zhang, Q., Adv. Mater. 21, 1983 (2009).CrossRefGoogle Scholar
Scott, J.F., Annu. Rev. Mater. Res. 41, 229 (2011).CrossRefGoogle Scholar
Valant, M., Prog. Mater. Sci. 57, 980 (2012).CrossRefGoogle Scholar
Li, X., Lu, S.-G., Chen, X.-Z., Gu, H., Qian, X.-S., Zhang, Q.M., J. Mater. Chem. C 23, 1 (2013).Google Scholar
Alpay, S.P., Mantese, J., Trolier-McKinstry, S., Zhang, Q., Whatmore, R.W., MRS Bull. 39, 1099 (2014).CrossRefGoogle Scholar
Kutnjak, Z., Rožič, B., Pirc, R., “Electrocaloric Effect: Theory, Measurements, and Applications,” in Wiley Encyclopedia of Electrical and Electronics Engineering, Webster, J., Ed. (Wiley, 2015).Google Scholar
Brown, G.V., J. Appl. Phys. 47, 3673 (1976).CrossRefGoogle Scholar
Crossley, S., Nair, B., Whatmore, R.W., Moya, X., Mathur, N.D., (forthcoming).Google Scholar
Kar-Narayan, S., Mathur, N.D., Appl. Phys. Lett. 95, 242903 (2009).CrossRefGoogle Scholar
Kishi, H., Mizuno, Y., Chazono, H., Jpn. J. Appl. Phys. 42, 1 (2003).CrossRefGoogle Scholar
Lawless, W.N., Clark, C.F., Phys. Rev. B Condens. Matter 36, 459 (1987).CrossRefGoogle Scholar
Mischenko, A., Mathur, N., “Solid State Electrocaloric Cooling Device with Heat Switches and Method of Cooling,” GB Patent PCT/GB2005/050207 (2005).Google Scholar
Gu, H., Qian, X., Li, X., Craven, B., Zhu, W., Cheng, A., Yao, S.C., Zhang, Q.M., Appl. Phys. Lett. 102, 122904 (2013).CrossRefGoogle Scholar
Kar-Narayan, S., Mathur, N.D., J. Phys. D Appl. Phys. 43, 032002 (2010).CrossRefGoogle Scholar
Bai, Y., Zheng, G., Shi, S., Appl. Phys. Lett. 96, 192902 (2010).CrossRefGoogle Scholar
Kar-Narayan, S., Crossley, S., Moya, X., Kovacova, V., Abergel, J., Bontempi, A., Baier, N., Defay, E., Mathur, N.D., Appl. Phys. Lett. 102, 032903 (2013).CrossRefGoogle Scholar
Hirose, S., Usui, T., Crossley, S., Nair, B., Ando, A., Moya, X., Mathur, N.D., APL Mater. 4, 064105 (2016).CrossRefGoogle Scholar
Liu, Y., Strozyk, H., Dkhil, B., Defay, E., Appl. Phys. Lett. 109, 212902 (2016).CrossRefGoogle Scholar
Molin, C., Gebhardt, S., Ferroelectrics 498, 111 (2016).CrossRefGoogle Scholar
Usui, T., Hirose, S., Ando, A., Crossley, S., Nair, B., Moya, X., Mathur, N.D., J. Phys. D Appl. Phys. 50, 424002 (2017).CrossRefGoogle Scholar
Faye, R., Strozyk, H., Dkhil, B., Defay, E., J. Phys. D Appl. Phys. 50, 464002 (2017).CrossRefGoogle Scholar
Fulanović, L., Koruzac, J., Novak, N., Weyland, F., Malič, B., Bobnar, V., J. Eur. Ceram. Soc. 37, 5105 (2017).CrossRefGoogle Scholar
Fulanović, L., Drnovšek, S., Uršič, H., Vrabelj, M., Kuščer, D., Makarovič, K., Bobnar, V., Kutnjak, Z., Malič, B., J. Eur. Ceram. Soc. 37, 599 (2017).CrossRefGoogle Scholar
Jia, Y., Ju, Y.S., Appl. Phys. Lett. 100, 242901 (2012).CrossRefGoogle Scholar
Blumenthal, P., Molin, C., Gebhardt, S., Raatz, A., Ferroelectrics 497, 1 (2016).CrossRefGoogle Scholar
Wang, Y.D., Smullin, S.J., Sheridan, M.J., Wang, Q., Eldershaw, C., Schwartz, D.E., Appl. Phys. Lett. 107, 134103 (2015).CrossRefGoogle Scholar
Sette, D., Asseman, A., Gérard, M., Strozyk, H., Faye, R., Defay, E., APL Mater. 4, 091101 (2016).CrossRefGoogle Scholar
Zhang, T., Qian, X.-S., Gu, H., Hou, Y., Zhang, Q.M., Appl. Phys. Lett. 110, 243503 (2017).CrossRefGoogle Scholar
Weyland, F., Eisele, T., Steiner, S., Frömling, T., Rossetti, G.A. Jr., Rödel, J., Novak, N., J. Eur. Ceram. Soc. 38, 551 (2018).CrossRefGoogle Scholar