Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T02:45:45.909Z Has data issue: false hasContentIssue false

Electrically Conducting Polymers: Science and Technology

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For the past 50 years, conventional insulating-polymer systems have increasingly been used as substitutes for structural materials such as wood, ceramics, and metals because of their high strength, light weight, ease of chemical modification/customization, and processability at low temperatures. In 1977 the first intrinsic electrically conducting organic polymer—doped polyacetylene—was reported, spurring interest in “conducting polymers.” Intrinsically conducting polymers are completely different from conducting polymers that are merely a physical mixture of a nonconductive polymer with a conducting material such as metal or carbon powder. Although initially these intrinsically conducting polymers were neither processable nor air-stable, new generations of these materials now are processable into powders, films, and fibers from a wide variety of solvents, and also are airstable. Some forms of these intrinsically conducting polymers can be blended into traditional polymers to form electrically conductive blends. The electrical conductivities of the intrinsically conductingpolymer systems now range from those typical of insulators (<10−10 S/cm (10−10 Ω−1 cm1)) to those typical of semiconductors such as silicon (~10 5 S/cm) to those greater than 10+4 S/cm (nearly that of a good metal such as copper, 5 × 105 S/cm). Applications of these polymers, especially polyanilines, have begun to emerge. These include coatings and blends for electrostatic dissipation and electromagnetic-interference (EMI) shielding, electromagnetic-radiation absorbers for welding (joining) of plastics, conductive layers for light-emitting polymer devices, and anticorrosion coatings for iron and steel.

The common electronic feature of pris tine (undoped) conducting polymers is the π-conjugated system, which is formed by the overlap of carbon pz orbitals and alternating carbon-carbon bond lengths.

Type
Polymeric and Organic Electronic Materials and Applications
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chiang, C.K., Fincher, C.R. Jr., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., and MacDiarmid, A.G., Phys. Rev. Lett. 39 (1977) p. 1098.CrossRefGoogle Scholar
2.Kohlman, R.S., Joo, J., and Epstein, A.J., in Physical Properties of Polymers Handbook, edited by Mark, J.E. (AIP Press, Woodbury, NY, (1996) p. 453.Google Scholar
3.Proc. Int. Conf. on Science and Technology of Synthetic Metals, edited by Park, Y.W. and Lee, H. (Seoul, Korea, July 24–29, 1994) (Synth. Met. 69–71, 1995); Proc. Int. Conf. on Science and Technology of Synthetic Metals, edited by Z.V. Vardeny and A.J. Epstein (Snowbird, Utah, July 28- August 2,1996) (Synth. Met. 84–86 1997).Google Scholar
4.and, R. KohlmanEpstein, A.J., in Handbook of Conducting Polymers, edited by Skothern, T., Elsenbaumer, R.L., and Reynolds, J. (Marcel Dekker, Inc., New York) in press.Google Scholar
5.Baeriswyl, D., Campbell, D.K., and Mazumdar, S., in Conjugated Conducting Polymers, edited by Keiss, H.G. (Springer-Verlag, Berlin, 1992) p. 7.CrossRefGoogle Scholar
6.Conwell, E.M., IEEE Trans. Electr. Insulation EI22 (1987) p. 591.CrossRefGoogle Scholar
7.Heeger, A.J., Kivelson, S.A., Schrieffer, J.R., and Su, W.P., Rev. Mod. Phys. 60 (1988) p. 781.CrossRefGoogle Scholar
8.Ginder, J.M. and Epstein, A.J., Phys. Rev. B41 (1990) p. 10674.CrossRefGoogle Scholar
9.Libert, J., Brédas, J.L., and Epstein, A.J., Phys. Rev. B 51 (1995) p. 5711.CrossRefGoogle Scholar
10.Jeckelmann, E. and Baeriswyl, D., Synth. Met. 65 (1994) p. 211; S.N. Dixit and S. Mazumdar, Phys. Rev. B 29 (1984) p. 1824; W.K. Wu and S. Kivelson, Phys. Rev. B. 33 (1986) p. 8546; C. Wu, X. Sun, and K. Nasu, Phys. Rev. Lett. 59 (1987) p. 831.CrossRefGoogle Scholar
11.Gibson, H.W., Bailey, F.C., Epstein, A.J., Rommelmann, H., Kaplan, S., Harbour, J., Yang, X-Q., Tanner, D.B., and Pochan, J.M., J. Am. Chem. Soc. 105 (1983) p. 4417.CrossRefGoogle Scholar
12.dos Santos, M.C. and Brédas, J.L., Phys. Rev. Lett. 62 (1989) p. 2499; J.M. Ginder and A.J. Epstein, Phys. Rev. Lett. 64 (1990) p. 1184.CrossRefGoogle Scholar
13.Pouget, J.P., Oblakowski, Z., Nogami, Y., Albouy, P.A., Laridjani, M., Oh, E.J., Min, Y., MacDiarmid, A.G., Tsukamoto, J., Ishiguro, T., and Epstein, A.J., Synth. Met. 65 (1994) p. 131.CrossRefGoogle Scholar
14.Murthy, N.S., Miller, G.G., and Baughman, R.H., J. Chem. Phys. 89 (1988) p. 2523.CrossRefGoogle Scholar
15.Su, W.P., Schrieffer, J.R., and Heeger, A.J., Phys. Rev. Lett. 42 (1979) p. 1698.CrossRefGoogle Scholar
16.Brazovskii, S.A., Sov. Phys. JETP 28 (1978) p. 606.Google Scholar
17.Rice, M.J., Phys. Lett. 71A (1979) p. 152.CrossRefGoogle Scholar
18.Campbell, D.K. and Bishop, A.R., Phys. Rev. B 24 (1981) p. 4859.CrossRefGoogle Scholar
19.Kivelson, S. and Wu, W.K., Phys. Rev. 34 (1986) p. 5423.CrossRefGoogle Scholar
20.Wei, X., Hess, B.C., Vardeny, Z.V., and Wudl, F., Phys. Rev. Lett. 68 (1992) p. 666; K.A. Coplin, S. Jasty, S.M. Long, S.K. Manohar, Y. Min, A.G. MacDiarmid, and A.J. Epstein, Phys. Rev. Lett. 72 (1994) p. 3206.CrossRefGoogle Scholar
21.Mizes, H.A. and Conwell, E.M., Phys. Rev. B 50 (1994) p. 11243.CrossRefGoogle Scholar
22.Colaneri, N.F., Bradley, D.D.C., Friend, R.H., Burn, P.L., Holmes, A.B., and Spangler, C.W., Phys. Rev. B 42 (1990) p. 11670.CrossRefGoogle Scholar
23.Yan, M., Rothberg, L.J., Papadimitrakopoulos, F., Galvin, M.E., and Miller, T.M., Phys. Rev. Lett. 72 (1994) p. 156; J.W. Blatchford, S.W. Jessen, L.B. Lin, J.J. Lih, T.L. Gustafson, A.J. Epstein, D.K. Fu, M.J. Marsella, T.M. Swager, A.G. MacDiarmid, S. Yamaguchi, and H. Hamaguchi, Phys. Rev. Lett. 76 p. 1513.Google Scholar
24.Conwell, E.M., Mizes, H.A., and Jeyadev, S., Phys. Rev. B 40 (1989) p. 1630.CrossRefGoogle Scholar
25.Stafstrom, S., Phys. Rev. B 43 (1991) p. 12437.CrossRefGoogle Scholar
26.Epstein, A.J., Ginder, J.M., Zuo, F., Bigelow, R.W., Woo, H-S., Tanner, D.B., Richter, A.F., Huang, W-S., and MacDiarmid, A.G., Synth. Met. 18 (1987) p. 303.CrossRefGoogle Scholar
27.Stafstrom, S., Bredas, J.L., Epstein, A.J., Woo, H-S., Tanner, D.B., Huang, W-S., and MacDiarmid, A.G., Phys. Rev. Lett. 59 (1987) p. 1474.CrossRefGoogle Scholar
28.Bredas, J.L., Thémans, B., Fripiat, J.G., André, J.M., and Chance, R.R., Phys. Rev. B 29 (1984) p. 6761.CrossRefGoogle Scholar
29.Genoud, F., Guglielmi, M., Nechtschein, M., Genies, E., and Salmon, M., Phys. Rev. Lett. 55 (1985) p. 118.CrossRefGoogle Scholar
30.MacDiarmid, A.G. and Epstein, A.J., Synth. Met. 65 (1994) p. 103.CrossRefGoogle Scholar
31.Cao, Y. and Heeger, A.J., Synth. Met. 52 (1992) p. 193.CrossRefGoogle Scholar
32.Yue, J. and Epstein, A.J., J. Am. Client. Soc. 112 (1990) p. 2800; X-L. Wei, Y.Z. Wang, S.M. Long, C. Bobecko, and A.J. Epstein, J. Am. Client. Soc. 118 (1996) p. 2545. W. Lee, G. Du, S.M. Long, S. Shimizu, T. Saitoh, M. Uzawa, and A.J. Epstein, Synth. Met. in press.CrossRefGoogle Scholar
33.Bartonek, M. and Kuzmany, H., Synth. Met. 41–43 (1991) p. 607; K. Mizoguchi, T. Obana, S. Ueno, and K. Kume, Synth. Met.. 55–57 (1993) p. 601; F. Genoud, M. Nechtschein, and C. Santier, Synth. Met. p. 642.CrossRefGoogle Scholar
34.Jozefowicz, M.E., Laversanne, R., Javadi, H.H.S., Epstein, A.J., Pouget, J.P., Tang, X., and MacDiarmid, A.G., Phys. Rev. B 39 (1989) p. 12958.CrossRefGoogle Scholar
35.Tsukamoto, J., Adv. Phys. 41 (1992) p. 509.CrossRefGoogle Scholar
36.Naarmann, H. and Theophilou, N., Synth. Met. 22 (1987) p. 1.CrossRefGoogle Scholar
37.Shirakawa, H., Zhang, Y-X., Okuda, T., Sakamaki, K., and Akagi, K., Synth. Met. 65 (1994).CrossRefGoogle Scholar
38. (a) Tsukamoto, J., Adv. in Phys. 41 (1992) p. 509CrossRefGoogle Scholar
(b) Naarmann, H. and Theophilou, N., Synth. Met. 22 (1987) p. 1CrossRefGoogle Scholar
(c) Shirakawa, H., Zhang, Y.X., Okuda, T., Sakamaki, K., and Akagi, K., Synth. Met. 65 (1994) p. 93CrossRefGoogle Scholar
(d) Chiang, J-C. and MacDiarmid, A.G., Synth. Met. 13 (1986) p. 193CrossRefGoogle Scholar
(e) Epstein, A.J., Rommelmann, H., Bigelow, R., Gibson, H.W., Hoffman, D.M., and Tanner, D.B., Phys. Rev. Lett. 50 (1983) p. 1866CrossRefGoogle Scholar
(f) Adams, P.N., Laughlin, P., Monkman, A.P., and Bernhoeft, N., Solid State Commun. 91 (1994) p. 895; the value of conductivity reported in Figure 4 is for samples kindly provided by Dr. Monkman and coworkers, and measured at The Ohio State UniversityCrossRefGoogle Scholar
(g) Cao, Y., Smith, P., and Heeger, A.J., Synth. Met. 48 (1992) p. 91CrossRefGoogle Scholar
(h) Joo, J., Oblakowski, Z., Du, G., Pouget, J.P., Oh, E.J., Weisinger, J.M., Min, Y., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 49 (1994) p. 2977CrossRefGoogle Scholar
(i) Wang, Y.Z., Joo, J., Hsu, C-H., Pouget, J.P., and Epstein, A.J., Phys. Rev. B 50 (1994) p. 16811CrossRefGoogle Scholar
(j) Wang, Z.H., Javadi, H.H.S., Ray, A., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 42 (1990) p. 5411CrossRefGoogle Scholar
(k) Yue, J., Wang, Z.H., Cromack, K.R., Epstein, A.J., and MacDiarmid, A.G., J. Am. Chem. Soc. 113 (1991) p. 2655CrossRefGoogle Scholar
(l) Yamaura, M., Hagiwara, T., and Iwata, K., Synth. Met. lit (1988) p. 209CrossRefGoogle Scholar
(m,n) Kohlman, R.S., Joo, J., Wang, Y.Z., Pouget, J.P., Kaneko, H., Ishiguro, T., and Epstein, A.J., Phys. Rev. Lett. 74 (1995) p. 773 K. Sato, M. Yamaura, T. Hagiwara, K. Murata, and M. Tokumoto, Synth. Met. 40 (1991) p. 35;CrossRefGoogle Scholar
(o) McCullough, R.D., Williams, S.P., Tristran-Nagle, S., Jayaraman, M., Ewbank, P.C., and Miller, L., Synth. Met. 69 (1995) p. 279CrossRefGoogle Scholar
(p) Österholm, J-E., Passiniemi, P., Isotalo, H., and Stubb, H., Synth. Met.. 18 (1987) p. 213CrossRefGoogle Scholar
(q) Ohnishi, T., Noguchi, T., Nakano, T., Hirooka, M., and Murase, I., Synth. Met. 41–43 (1991) p. 309CrossRefGoogle Scholar
(r) Shacklette, L.W., Chance, R.R., Ivory, D.M., Miller, G.G., and Baughman, R.H., Synth. Met.. 1 (1979) p. 307CrossRefGoogle Scholar
(s) Du, G., Prigodin, V.N., Burns, A., Wang, C.S., and Epstein, A.J. (unpublished manuscript)Google Scholar
(t) Epstein, A.J., Rommelmann, H., Abkowitz, M., and Gibson, H.W., Phys. Rev. Lett. 47 (1981) p. 1549CrossRefGoogle Scholar
(u) Epstein, A.J., Rommelmann, H., and Gibson, H.W., Phys. Rev. B 31 (1985) p. 2502CrossRefGoogle Scholar
(v) Zuo, F., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 39 (1989) p. 3570CrossRefGoogle Scholar
(w) Scott, J.C., Pfluger, P., Krounbi, M.T., and Street, G.B., Phys. Rev. B 28 (1983) p. 2140CrossRefGoogle Scholar
(x) Österholm, J-E., Passiniemi, P.P., Isotalo, H., and Strubb, H., Synth. Met. 18 (1987) p. 213CrossRefGoogle Scholar
(y) Wnek, G.E., Chien, J.C., Karasz, F.E., and Lillya, C.P., Polymer 20 (1979) p. 1441CrossRefGoogle Scholar
(z) Shacklette, L.W., Chance, R.R., Ivory, D.M., Miller, G.G., and Baughman, R.H., Synth. Met. 1 (1979) p. 307.CrossRefGoogle Scholar
39.Kittel, C., in Introduction to Solid State Physics (John Wiley & Sons, New York, 1986) p. 157.Google Scholar
40.Anderson, P.W., Phys. Rev. 109 (1958) p. 1492.CrossRefGoogle Scholar
41.Mott, N.F. and Davis, E., Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
42.Blatchford, J.W. and Epstein, A.J., Am. J. Phys. 64 (1996) p. 120.CrossRefGoogle Scholar
43.Wang, Z.H., Ray, A., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 43 (1991) p. 4373; J. Joo, V.N. Prigodin, Y.G. Min, A.G. MacDiarmid, and A.J. Epstein, Phys. Rev. B. 50 (1994) p. 12226.CrossRefGoogle Scholar
44.Kohlman, R.S., Joo, J., Wang, Y.Z., Pouget, J.P., Kaneko, H., Ishiguro, T., and Epstein, A.J., Phys. Rev. Lett. 74 (1995) p. 773; R.S. Kohlman, J. Joo, Y.G. Min, A.G. MacDiarmid, and A.J. Epstein, Phys. Rev. Lett. 77 (1996) p. 2766.CrossRefGoogle Scholar
45.Ishiguro, T., Kaneko, H., Nogami, Y., Nishiyama, H., Tsukamoto, J., Takahashi, A., Yamaura, M., and Sato, J., Phys. Rev. Lett. 69 (1992) p. 660; H. Kaneko, T. Ishiguro, J. Tsukamoto, and A. Takahashi, Solid State Commun. 90 (1994) p. 83.CrossRefGoogle Scholar
46.Tanaka, J., Tanaka, C., Miyamae, T., Shimizu, M., Hasegawa, S., Kamiya, K., and Seki, K., Synth. Met. 65 (1994) p. 173.CrossRefGoogle Scholar
47.Colaneri, N.F. and Shacklette, L.W., IEEE Trans. Instrum. Meas. IM–41 (1992) p. 291; T. Taka, Synth. Met. 41–43 (1991) p. 1177; J. Joo and A.J. Epstein, Appl. Phys. Lett. 65 (1994) p. 2278.CrossRefGoogle Scholar
48.Epstein, A.J., Joo, J., Wu, C-Y., Benatar, A., Faisst, C.F. Jr., Zegarski, J., and MacDiarmid, A.G., in Intrinsically Conducting Polymers: An Emerging Technology, edited by Aldissi, M. (Kluwer Academic Publishers, Netherlands, 1993) p. 165.CrossRefGoogle Scholar
49.DeBerry, D.W., J. Electrochem. Soc. 132 (1985) p. 1022; N. Ahmad and A.G. MacDiarmid, Synth. Met. 78 (1996) p. 103; B. Wessling, Adv. Mater. 6 (1994) p. 226; W-K. Lu, R.L. Elsenbaumer, and B. Wessling, Synth. Met. 71 (1995) p. 2163; D.A. Wrobleski, B.C. Benicewicz, K.G. Thompson, and C.J. Bryan, ACS Polymer Preprints 35 (1994) p. 265; Y. Wei, J. Wang, X. Jia, J-M. Yeh, and P. Spellane, Polym. Mater. Sci. Eng. 72 (1995) p. 563.CrossRefGoogle Scholar
50.Jasty, S. and Epstein, A.J., Polym. Mater. Sci. Eng. p. 565; M. Fahlman, S. Jasty, and A.J. Epstein, Synth. Met. in press.Google Scholar
51.Karg, S., Scott, J.C., Salem, J.R., and Angelopoulos, M., Synth. Met.Google Scholar
52.Yang, Y., Westerweele, E., Zhang, C., Smith, P., and Heeger, A.J., J. Appl. Phys. 77 (1995) p. 694.CrossRefGoogle Scholar
53.Wang, Y.Z., Gebler, D.D., Lin, L.B., Blatchford, J.W., Jessen, S.W., Wang, H.L., and Epstein, A.J., Appl. Phys. Lett. 68 (1996) p. 894.CrossRefGoogle Scholar